🐛 Fix delta calculation
This commit is contained in:
176
lib/solver.dart
176
lib/solver.dart
@@ -277,10 +277,9 @@ class SolverService {
|
||||
|
||||
final deltaDouble = delta.toDouble();
|
||||
if (deltaDouble > 0) {
|
||||
// Keep sqrt symbolic instead of evaluating to decimal
|
||||
final sqrtDeltaStr = _formatSqrtExpression(delta.toDouble());
|
||||
final x1Expr = _formatQuadraticRoot(-b, sqrtDeltaStr, 2 * a, true);
|
||||
final x2Expr = _formatQuadraticRoot(-b, sqrtDeltaStr, 2 * a, false);
|
||||
// Pass delta directly to maintain precision
|
||||
final x1Expr = _formatQuadraticRoot(-b, delta, 2 * a, true);
|
||||
final x2Expr = _formatQuadraticRoot(-b, delta, 2 * a, false);
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
@@ -319,8 +318,9 @@ class SolverService {
|
||||
),
|
||||
);
|
||||
|
||||
// Keep sqrt symbolic for complex roots
|
||||
final sqrtNegDeltaStr = _formatSqrtExpression(-delta.toDouble());
|
||||
// For complex roots, we need to handle -delta
|
||||
final negDelta = -delta;
|
||||
final sqrtNegDeltaStr = _formatSqrtFromRational(negDelta);
|
||||
final realPart = -b / (2 * a);
|
||||
final imagPartExpr = _formatImaginaryPart(sqrtNegDeltaStr, 2 * a);
|
||||
|
||||
@@ -1079,49 +1079,113 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
|
||||
|
||||
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
|
||||
|
||||
/// 格式化平方根表达式,保持符号形式
|
||||
String _formatSqrtExpression(double value) {
|
||||
if (value == 0) return '0';
|
||||
/// 格式化 Rational 值的平方根表达式,保持符号形式
|
||||
String _formatSqrtFromRational(Rational value) {
|
||||
if (value == Rational.zero) return '0';
|
||||
|
||||
// 处理负数(用于复数根)
|
||||
if (value < 0) {
|
||||
return '\\sqrt{${(-value).toInt()}}';
|
||||
if (value < Rational.zero) {
|
||||
return '\\sqrt{${(-value).toBigInt()}}';
|
||||
}
|
||||
|
||||
// 检查是否为完全平方数
|
||||
final sqrtValue = sqrt(value);
|
||||
final rounded = sqrtValue.round();
|
||||
if ((sqrtValue - rounded).abs() < 1e-10) {
|
||||
return rounded.toString();
|
||||
}
|
||||
// 尝试将 Rational 转换为完全平方数的形式
|
||||
// 例如: 4/9 -> 2/3, 9/4 -> 3/2, 25/16 -> 5/4 等
|
||||
|
||||
// 寻找最大的完全平方数因子
|
||||
int maxSquareFactor = 1;
|
||||
int intValue = value.toInt();
|
||||
for (int i = 2; i * i <= intValue; i++) {
|
||||
if (intValue % (i * i) == 0) {
|
||||
maxSquareFactor = i * i;
|
||||
}
|
||||
}
|
||||
// 首先简化分数
|
||||
final simplified = value;
|
||||
|
||||
final coefficient = sqrt(maxSquareFactor).round();
|
||||
final remaining = intValue ~/ maxSquareFactor;
|
||||
// 检查分子和分母是否都是完全平方数
|
||||
final numerator = simplified.numerator;
|
||||
final denominator = simplified.denominator;
|
||||
|
||||
if (remaining == 1) {
|
||||
return coefficient == 1
|
||||
? '\\sqrt{$intValue}'
|
||||
: '$coefficient\\sqrt{$remaining}';
|
||||
} else if (coefficient == 1) {
|
||||
return '\\sqrt{$remaining}';
|
||||
// 寻找分子和分母的平方根因子
|
||||
BigInt sqrtNumerator = _findSquareRootFactor(numerator);
|
||||
BigInt sqrtDenominator = _findSquareRootFactor(denominator);
|
||||
|
||||
// 计算剩余的分子和分母
|
||||
final remainingNumerator = numerator ~/ (sqrtNumerator * sqrtNumerator);
|
||||
final remainingDenominator =
|
||||
denominator ~/ (sqrtDenominator * sqrtDenominator);
|
||||
|
||||
// 构建结果
|
||||
String result = '';
|
||||
|
||||
// 处理系数部分
|
||||
if (sqrtNumerator > BigInt.one || sqrtDenominator > BigInt.one) {
|
||||
if (sqrtNumerator > sqrtDenominator) {
|
||||
final coeff = sqrtNumerator ~/ sqrtDenominator;
|
||||
if (coeff > BigInt.one) {
|
||||
result += '$coeff';
|
||||
}
|
||||
} else if (sqrtDenominator > sqrtNumerator) {
|
||||
// 这会导致分母,需要用分数表示
|
||||
final coeffNum = sqrtNumerator;
|
||||
final coeffDen = sqrtDenominator;
|
||||
if (coeffNum == BigInt.one) {
|
||||
result += '\\frac{1}{$coeffDen}';
|
||||
} else {
|
||||
return '$coefficient\\sqrt{$remaining}';
|
||||
result += '\\frac{$coeffNum}{$coeffDen}';
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 处理根号部分
|
||||
if (remainingNumerator == BigInt.one &&
|
||||
remainingDenominator == BigInt.one) {
|
||||
// 没有根号部分
|
||||
if (result.isEmpty) {
|
||||
return '1';
|
||||
}
|
||||
} else if (remainingNumerator == remainingDenominator) {
|
||||
// 根号部分约分后为1
|
||||
if (result.isEmpty) {
|
||||
return '1';
|
||||
}
|
||||
} else {
|
||||
// 需要根号
|
||||
String sqrtContent = '';
|
||||
if (remainingDenominator == BigInt.one) {
|
||||
sqrtContent = '$remainingNumerator';
|
||||
} else {
|
||||
sqrtContent = '\\frac{$remainingNumerator}{$remainingDenominator}';
|
||||
}
|
||||
|
||||
if (result.isEmpty) {
|
||||
result = '\\sqrt{$sqrtContent}';
|
||||
} else {
|
||||
result += '\\sqrt{$sqrtContent}';
|
||||
}
|
||||
}
|
||||
|
||||
return result.isEmpty ? '1' : result;
|
||||
}
|
||||
|
||||
/// 寻找一个大整数的平方根因子
|
||||
BigInt _findSquareRootFactor(BigInt n) {
|
||||
if (n <= BigInt.one) return BigInt.one;
|
||||
|
||||
BigInt factor = BigInt.one;
|
||||
BigInt i = BigInt.two;
|
||||
|
||||
while (i * i <= n) {
|
||||
BigInt count = BigInt.zero;
|
||||
while (n % (i * i) == BigInt.zero) {
|
||||
n = n ~/ (i * i);
|
||||
count += BigInt.one;
|
||||
}
|
||||
if (count > BigInt.zero) {
|
||||
factor = factor * i;
|
||||
}
|
||||
i += BigInt.one;
|
||||
}
|
||||
|
||||
return factor;
|
||||
}
|
||||
|
||||
/// 格式化二次方程的根:(-b ± sqrt(delta)) / (2a)
|
||||
String _formatQuadraticRoot(
|
||||
double b,
|
||||
String sqrtExpr,
|
||||
Rational delta,
|
||||
double denominator,
|
||||
bool isPlus,
|
||||
) {
|
||||
@@ -1133,22 +1197,23 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
|
||||
: '(${b.toInt()})';
|
||||
final denomStr = denominator == 2 ? '2' : denominator.toString();
|
||||
|
||||
// Format sqrt(delta) symbolically using the Rational value
|
||||
final sqrtExpr = _formatSqrtFromRational(delta);
|
||||
|
||||
if (b == 0) {
|
||||
// 简化为 ±sqrt(delta)/denominator
|
||||
if (denominator == 2) {
|
||||
return isPlus
|
||||
? '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{2}'
|
||||
: '-\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{2}';
|
||||
return isPlus ? '\\frac{$sqrtExpr}{2}' : '-\\frac{$sqrtExpr}{2}';
|
||||
} else {
|
||||
return isPlus
|
||||
? '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{$denomStr}'
|
||||
: '-\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{$denomStr}';
|
||||
? '\\frac{$sqrtExpr}{$denomStr}'
|
||||
: '-\\frac{$sqrtExpr}{$denomStr}';
|
||||
}
|
||||
} else {
|
||||
// 完整的表达式:(-b ± sqrt(delta))/denominator
|
||||
final numerator = b > 0
|
||||
? '-$bStr $sign \\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}'
|
||||
: '(${b.toInt()}) $sign \\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}';
|
||||
? '-$bStr $sign $sqrtExpr'
|
||||
: '(${b.toInt()}) $sign $sqrtExpr';
|
||||
|
||||
if (denominator == 2) {
|
||||
return '\\frac{$numerator}{2}';
|
||||
@@ -1256,33 +1321,6 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
|
||||
return coeffs;
|
||||
}
|
||||
|
||||
/// 规范化系数字符串
|
||||
String _normalizeCoefficientString(String coeff) {
|
||||
if (coeff.isEmpty || coeff == '+') return '1';
|
||||
if (coeff == '-') return '-1';
|
||||
|
||||
// 处理类似 "2sqrt(3)" 的情况
|
||||
coeff = coeff.replaceAll(' ', ''); // 移除空格
|
||||
|
||||
// 检查是否是纯数字
|
||||
final numValue = double.tryParse(coeff);
|
||||
if (numValue != null) {
|
||||
return coeff;
|
||||
}
|
||||
|
||||
// 检查是否包含 sqrt
|
||||
if (coeff.contains('sqrt(') || coeff.contains('\\sqrt{')) {
|
||||
// 如果前面没有数字系数,默认为 1
|
||||
if (coeff.startsWith('sqrt(') || coeff.startsWith('\\sqrt{')) {
|
||||
return coeff.startsWith('-') ? coeff : '1' + coeff;
|
||||
}
|
||||
// 如果前面有数字,保持原样
|
||||
return coeff;
|
||||
}
|
||||
|
||||
return coeff;
|
||||
}
|
||||
|
||||
/// 合并系数,保持符号形式
|
||||
String _combineCoefficients(String? existing, String newCoeff) {
|
||||
if (existing == null || existing == '0') return newCoeff;
|
||||
|
Reference in New Issue
Block a user