💄 🤔
This commit is contained in:
149
lib/solver.dart
149
lib/solver.dart
@@ -59,15 +59,24 @@ class SolverService {
|
|||||||
stepNumber: 1,
|
stepNumber: 1,
|
||||||
title: '表达式求值',
|
title: '表达式求值',
|
||||||
explanation: '这是一个标准的数学表达式,我们将直接计算其结果。',
|
explanation: '这是一个标准的数学表达式,我们将直接计算其结果。',
|
||||||
formula: input,
|
formula: '\$\$$input\$\$',
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
|
|
||||||
GrammarParser p = GrammarParser();
|
// 预处理平方根符号
|
||||||
Expression exp = p.parse(input);
|
final processedInput = _preprocessSqrt(input);
|
||||||
final result = RealEvaluator().evaluate(exp);
|
|
||||||
|
|
||||||
return CalculationResult(steps: steps, finalAnswer: result.toString());
|
GrammarParser p = GrammarParser();
|
||||||
|
Expression exp = p.parse(processedInput);
|
||||||
|
final result = RealEvaluator().evaluate(exp).toDouble();
|
||||||
|
|
||||||
|
// 尝试将结果格式化为几倍根号的形式
|
||||||
|
final formattedResult = _formatSqrtResult(result);
|
||||||
|
|
||||||
|
return CalculationResult(
|
||||||
|
steps: steps,
|
||||||
|
finalAnswer: '\$\$$formattedResult\$\$',
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// 2. 求解一元一次方程
|
/// 2. 求解一元一次方程
|
||||||
@@ -422,6 +431,81 @@ ${b1}y &= ${c1 - a1 * x}
|
|||||||
|
|
||||||
/// ---- 辅助函数 ----
|
/// ---- 辅助函数 ----
|
||||||
|
|
||||||
|
/// 将数值结果格式化为几倍根号的形式
|
||||||
|
String _formatSqrtResult(double result) {
|
||||||
|
// 处理负数
|
||||||
|
if (result < 0) {
|
||||||
|
return '-${_formatSqrtResult(-result)}';
|
||||||
|
}
|
||||||
|
|
||||||
|
// 处理零
|
||||||
|
if (result == 0) return '0';
|
||||||
|
|
||||||
|
// 检查是否接近整数
|
||||||
|
final rounded = result.round();
|
||||||
|
if ((result - rounded).abs() < 1e-10) {
|
||||||
|
return rounded.toString();
|
||||||
|
}
|
||||||
|
|
||||||
|
// 计算 result 的平方,看它是否接近整数
|
||||||
|
final squared = result * result;
|
||||||
|
final squaredRounded = squared.round();
|
||||||
|
|
||||||
|
// 如果 squared 接近整数,说明 result 是某个数的平方根
|
||||||
|
if ((squared - squaredRounded).abs() < 1e-6) {
|
||||||
|
// 寻找最大的完全平方数因子
|
||||||
|
int maxSquareFactor = 1;
|
||||||
|
for (int i = 2; i * i <= squaredRounded; i++) {
|
||||||
|
if (squaredRounded % (i * i) == 0) {
|
||||||
|
maxSquareFactor = i * i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
final coefficient = sqrt(maxSquareFactor).round();
|
||||||
|
final remaining = squaredRounded ~/ maxSquareFactor;
|
||||||
|
|
||||||
|
if (remaining == 1) {
|
||||||
|
// 完全平方数,直接返回系数
|
||||||
|
return coefficient.toString();
|
||||||
|
} else if (coefficient == 1) {
|
||||||
|
return '\\sqrt{$remaining}';
|
||||||
|
} else {
|
||||||
|
return '$coefficient\\sqrt{$remaining}';
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// 如果不是平方根的结果,返回原始数值(保留几位小数)
|
||||||
|
return result
|
||||||
|
.toStringAsFixed(6)
|
||||||
|
.replaceAll(RegExp(r'\.0+$'), '')
|
||||||
|
.replaceAll(RegExp(r'\.$'), '');
|
||||||
|
}
|
||||||
|
|
||||||
|
/// 预处理平方根表示法,将 \sqrt{expr} 转换为 sqrt(expr)
|
||||||
|
String _preprocessSqrt(String input) {
|
||||||
|
// 使用正则表达式替换 \sqrt{expr} 为 sqrt(expr)
|
||||||
|
// 处理嵌套的情况,使用循环直到没有更多匹配
|
||||||
|
String result = input;
|
||||||
|
int maxIterations = 10; // 防止无限循环
|
||||||
|
int iterationCount = 0;
|
||||||
|
|
||||||
|
while (iterationCount < maxIterations) {
|
||||||
|
String oldResult = result;
|
||||||
|
result = result.replaceAllMapped(
|
||||||
|
RegExp(r'\\sqrt\{([^}]+)\}'),
|
||||||
|
(match) => 'sqrt(${match.group(1)})',
|
||||||
|
);
|
||||||
|
if (result == oldResult) break;
|
||||||
|
iterationCount++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (iterationCount >= maxIterations) {
|
||||||
|
throw Exception('平方根表达式过于复杂,请简化输入。');
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
String _expandExpressions(String input) {
|
String _expandExpressions(String input) {
|
||||||
String result = input;
|
String result = input;
|
||||||
int maxIterations = 10; // Prevent infinite loops
|
int maxIterations = 10; // Prevent infinite loops
|
||||||
@@ -544,29 +628,68 @@ ${b1}y &= ${c1 - a1 * x}
|
|||||||
|
|
||||||
Map<int, double> _parsePolynomial(String side) {
|
Map<int, double> _parsePolynomial(String side) {
|
||||||
final coeffs = <int, double>{};
|
final coeffs = <int, double>{};
|
||||||
|
// 扩展模式以支持 sqrt 函数
|
||||||
final pattern = RegExp(
|
final pattern = RegExp(
|
||||||
r'([+-]?(?:\d*\.?\d*)?)x(?:\^(\d+))?|([+-]?\d*\.?\d+)',
|
r'([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))x(?:\^(\d+))?|([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))',
|
||||||
);
|
);
|
||||||
var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side';
|
var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side';
|
||||||
|
|
||||||
for (final match in pattern.allMatches(s)) {
|
for (final match in pattern.allMatches(s)) {
|
||||||
if (match.group(3) != null) {
|
if (match.group(3) != null) {
|
||||||
coeffs[0] = (coeffs[0] ?? 0) + double.parse(match.group(3)!);
|
// 常数项
|
||||||
|
final constStr = match.group(3)!;
|
||||||
|
final constValue = _parseCoefficientWithSqrt(constStr);
|
||||||
|
coeffs[0] = (coeffs[0] ?? 0) + constValue;
|
||||||
} else {
|
} else {
|
||||||
|
// x 的幂次项
|
||||||
int power = match.group(2) != null ? int.parse(match.group(2)!) : 1;
|
int power = match.group(2) != null ? int.parse(match.group(2)!) : 1;
|
||||||
String coeffStr = match.group(1) ?? '+';
|
String coeffStr = match.group(1) ?? '+';
|
||||||
double coeff = 1.0;
|
final coeff = _parseCoefficientWithSqrt(coeffStr);
|
||||||
if (coeffStr.isNotEmpty && coeffStr != '+') {
|
|
||||||
coeff = coeffStr == '-' ? -1.0 : double.parse(coeffStr);
|
|
||||||
} else if (coeffStr == '-') {
|
|
||||||
coeff = -1.0;
|
|
||||||
}
|
|
||||||
coeffs[power] = (coeffs[power] ?? 0) + coeff;
|
coeffs[power] = (coeffs[power] ?? 0) + coeff;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return coeffs;
|
return coeffs;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// 解析包含 sqrt 函数的系数
|
||||||
|
double _parseCoefficientWithSqrt(String coeffStr) {
|
||||||
|
if (coeffStr.isEmpty || coeffStr == '+') return 1.0;
|
||||||
|
if (coeffStr == '-') return -1.0;
|
||||||
|
|
||||||
|
// 检查是否包含 sqrt 函数
|
||||||
|
final sqrtMatch = RegExp(r'sqrt\((\d+)\)').firstMatch(coeffStr);
|
||||||
|
if (sqrtMatch != null) {
|
||||||
|
final innerValue = int.parse(sqrtMatch.group(1)!);
|
||||||
|
|
||||||
|
// 对于完全平方数,直接返回整数结果
|
||||||
|
final sqrtValue = sqrt(innerValue.toDouble());
|
||||||
|
final rounded = sqrtValue.round();
|
||||||
|
if ((sqrtValue - rounded).abs() < 1e-10) {
|
||||||
|
// 检查是否有系数
|
||||||
|
final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, '');
|
||||||
|
if (coeffPart.isEmpty) return rounded.toDouble();
|
||||||
|
if (coeffPart == '-') return -rounded.toDouble();
|
||||||
|
|
||||||
|
final coeff = double.parse(coeffPart);
|
||||||
|
return coeff * rounded;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 对于非完全平方数,计算数值但保持高精度
|
||||||
|
final nonPerfectSqrtValue = sqrt(innerValue.toDouble());
|
||||||
|
|
||||||
|
// 检查是否有系数
|
||||||
|
final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, '');
|
||||||
|
if (coeffPart.isEmpty) return nonPerfectSqrtValue;
|
||||||
|
if (coeffPart == '-') return -nonPerfectSqrtValue;
|
||||||
|
|
||||||
|
final coeff = double.parse(coeffPart);
|
||||||
|
return coeff * nonPerfectSqrtValue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 普通数值
|
||||||
|
return double.parse(coeffStr);
|
||||||
|
}
|
||||||
|
|
||||||
List<double> _parseTwoVariableLinear(String equation) {
|
List<double> _parseTwoVariableLinear(String equation) {
|
||||||
final parts = equation.split('=');
|
final parts = equation.split('=');
|
||||||
if (parts.length != 2) throw Exception("方程 $equation 格式错误");
|
if (parts.length != 2) throw Exception("方程 $equation 格式错误");
|
||||||
|
Reference in New Issue
Block a user