🗑️ Clean up code
This commit is contained in:
390
lib/solver.dart
390
lib/solver.dart
@@ -189,22 +189,21 @@ class SolverService {
|
|||||||
// Keep original equation for display
|
// Keep original equation for display
|
||||||
final originalEquation = _formatOriginalEquation(input);
|
final originalEquation = _formatOriginalEquation(input);
|
||||||
|
|
||||||
// Parse coefficients symbolically
|
// Parse coefficients symbolically (kept for potential future use)
|
||||||
final leftCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[0]);
|
// final leftCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[0]);
|
||||||
final rightCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[1]);
|
// final rightCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[1]);
|
||||||
|
// final aSymbolic = _subtractCoefficients(
|
||||||
final aSymbolic = _subtractCoefficients(
|
// leftCoeffsSymbolic[2] ?? '0',
|
||||||
leftCoeffsSymbolic[2] ?? '0',
|
// rightCoeffsSymbolic[2] ?? '0',
|
||||||
rightCoeffsSymbolic[2] ?? '0',
|
// );
|
||||||
);
|
// final bSymbolic = _subtractCoefficients(
|
||||||
final bSymbolic = _subtractCoefficients(
|
// leftCoeffsSymbolic[1] ?? '0',
|
||||||
leftCoeffsSymbolic[1] ?? '0',
|
// rightCoeffsSymbolic[1] ?? '0',
|
||||||
rightCoeffsSymbolic[1] ?? '0',
|
// );
|
||||||
);
|
// final cSymbolic = _subtractCoefficients(
|
||||||
final cSymbolic = _subtractCoefficients(
|
// leftCoeffsSymbolic[0] ?? '0',
|
||||||
leftCoeffsSymbolic[0] ?? '0',
|
// rightCoeffsSymbolic[0] ?? '0',
|
||||||
rightCoeffsSymbolic[0] ?? '0',
|
// );
|
||||||
);
|
|
||||||
|
|
||||||
// Also get numeric values for calculations
|
// Also get numeric values for calculations
|
||||||
final leftCoeffs = _parsePolynomial(eqParts[0]);
|
final leftCoeffs = _parsePolynomial(eqParts[0]);
|
||||||
@@ -288,9 +287,6 @@ class SolverService {
|
|||||||
|
|
||||||
// Step 2: Move constant term to the other side
|
// Step 2: Move constant term to the other side
|
||||||
final constantTerm = c / a;
|
final constantTerm = c / a;
|
||||||
final constantStr = constantTerm >= 0
|
|
||||||
? '+${constantTerm}'
|
|
||||||
: constantTerm.toString();
|
|
||||||
|
|
||||||
steps.add(
|
steps.add(
|
||||||
CalculationStep(
|
CalculationStep(
|
||||||
@@ -1023,187 +1019,6 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
|
|||||||
|
|
||||||
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
|
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
|
||||||
|
|
||||||
/// 格式化 Rational 值的平方根表达式,保持符号形式
|
|
||||||
String _formatSqrtFromRational(Rational value) {
|
|
||||||
if (value == Rational.zero) return '0';
|
|
||||||
|
|
||||||
// 处理负数(用于复数根)
|
|
||||||
if (value < Rational.zero) {
|
|
||||||
return '\\sqrt{${(-value).toBigInt()}}';
|
|
||||||
}
|
|
||||||
|
|
||||||
// 尝试将 Rational 转换为完全平方数的形式
|
|
||||||
// 例如: 4/9 -> 2/3, 9/4 -> 3/2, 25/16 -> 5/4 等
|
|
||||||
|
|
||||||
// 首先简化分数
|
|
||||||
final simplified = value;
|
|
||||||
|
|
||||||
// 检查分子和分母是否都是完全平方数
|
|
||||||
final numerator = simplified.numerator;
|
|
||||||
final denominator = simplified.denominator;
|
|
||||||
|
|
||||||
// 寻找分子和分母的平方根因子
|
|
||||||
BigInt sqrtNumerator = _findSquareRootFactor(numerator);
|
|
||||||
BigInt sqrtDenominator = _findSquareRootFactor(denominator);
|
|
||||||
|
|
||||||
// 计算剩余的分子和分母
|
|
||||||
final remainingNumerator = numerator ~/ (sqrtNumerator * sqrtNumerator);
|
|
||||||
final remainingDenominator =
|
|
||||||
denominator ~/ (sqrtDenominator * sqrtDenominator);
|
|
||||||
|
|
||||||
// 构建结果
|
|
||||||
String result = '';
|
|
||||||
|
|
||||||
// 处理系数部分
|
|
||||||
if (sqrtNumerator > BigInt.one || sqrtDenominator > BigInt.one) {
|
|
||||||
if (sqrtNumerator > sqrtDenominator) {
|
|
||||||
final coeff = sqrtNumerator ~/ sqrtDenominator;
|
|
||||||
if (coeff > BigInt.one) {
|
|
||||||
result += '$coeff';
|
|
||||||
}
|
|
||||||
} else if (sqrtDenominator > sqrtNumerator) {
|
|
||||||
// 这会导致分母,需要用分数表示
|
|
||||||
final coeffNum = sqrtNumerator;
|
|
||||||
final coeffDen = sqrtDenominator;
|
|
||||||
if (coeffNum == BigInt.one) {
|
|
||||||
result += '\\frac{1}{$coeffDen}';
|
|
||||||
} else {
|
|
||||||
result += '\\frac{$coeffNum}{$coeffDen}';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// 处理根号部分
|
|
||||||
if (remainingNumerator == BigInt.one &&
|
|
||||||
remainingDenominator == BigInt.one) {
|
|
||||||
// 没有根号部分
|
|
||||||
if (result.isEmpty) {
|
|
||||||
return '1';
|
|
||||||
}
|
|
||||||
} else if (remainingNumerator == remainingDenominator) {
|
|
||||||
// 根号部分约分后为1
|
|
||||||
if (result.isEmpty) {
|
|
||||||
return '1';
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// 需要根号
|
|
||||||
String sqrtContent = '';
|
|
||||||
if (remainingDenominator == BigInt.one) {
|
|
||||||
sqrtContent = '$remainingNumerator';
|
|
||||||
} else {
|
|
||||||
sqrtContent = '\\frac{$remainingNumerator}{$remainingDenominator}';
|
|
||||||
}
|
|
||||||
|
|
||||||
if (result.isEmpty) {
|
|
||||||
result = '\\sqrt{$sqrtContent}';
|
|
||||||
} else {
|
|
||||||
result += '\\sqrt{$sqrtContent}';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return result.isEmpty ? '1' : result;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 寻找一个大整数的平方根因子
|
|
||||||
BigInt _findSquareRootFactor(BigInt n) {
|
|
||||||
if (n <= BigInt.one) return BigInt.one;
|
|
||||||
|
|
||||||
BigInt factor = BigInt.one;
|
|
||||||
BigInt i = BigInt.two;
|
|
||||||
|
|
||||||
while (i * i <= n) {
|
|
||||||
BigInt count = BigInt.zero;
|
|
||||||
while (n % (i * i) == BigInt.zero) {
|
|
||||||
n = n ~/ (i * i);
|
|
||||||
count += BigInt.one;
|
|
||||||
}
|
|
||||||
if (count > BigInt.zero) {
|
|
||||||
factor = factor * i;
|
|
||||||
}
|
|
||||||
i += BigInt.one;
|
|
||||||
}
|
|
||||||
|
|
||||||
return factor;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 格式化二次方程的根:(-b ± sqrt(delta)) / (2a)
|
|
||||||
String _formatQuadraticRoot(
|
|
||||||
double b,
|
|
||||||
Rational delta,
|
|
||||||
double denominator,
|
|
||||||
bool isPlus,
|
|
||||||
) {
|
|
||||||
final denomInt = denominator.toInt();
|
|
||||||
final denomStr = denominator == 2 ? '2' : denominator.toString();
|
|
||||||
|
|
||||||
// Format sqrt(delta) symbolically using the Rational value
|
|
||||||
final sqrtExpr = _formatSqrtFromRational(delta);
|
|
||||||
|
|
||||||
if (b == 0) {
|
|
||||||
// 简化为 ±sqrt(delta)/denominator
|
|
||||||
if (denominator == 2) {
|
|
||||||
return isPlus ? '\\frac{$sqrtExpr}{2}' : '-\\frac{$sqrtExpr}{2}';
|
|
||||||
} else {
|
|
||||||
return isPlus
|
|
||||||
? '\\frac{$sqrtExpr}{$denomStr}'
|
|
||||||
: '-\\frac{$sqrtExpr}{$denomStr}';
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// 完整的表达式:(-b ± sqrt(delta))/denominator
|
|
||||||
final bInt = b.toInt();
|
|
||||||
|
|
||||||
// Check if b is divisible by denominator for simplification
|
|
||||||
if (bInt % denomInt == 0) {
|
|
||||||
// Can simplify: b/denominator becomes integer
|
|
||||||
final simplifiedB = bInt ~/ denomInt;
|
|
||||||
|
|
||||||
if (simplifiedB == 0) {
|
|
||||||
// Just the sqrt part with correct sign
|
|
||||||
return isPlus ? sqrtExpr : '-$sqrtExpr';
|
|
||||||
} else if (simplifiedB == 1) {
|
|
||||||
// +1 * sqrt part
|
|
||||||
return isPlus ? '1 + $sqrtExpr' : '1 - $sqrtExpr';
|
|
||||||
} else if (simplifiedB == -1) {
|
|
||||||
// -1 * sqrt part
|
|
||||||
return isPlus ? '-1 + $sqrtExpr' : '-1 - $sqrtExpr';
|
|
||||||
} else if (simplifiedB > 0) {
|
|
||||||
// Positive coefficient
|
|
||||||
return isPlus
|
|
||||||
? '$simplifiedB + $sqrtExpr'
|
|
||||||
: '$simplifiedB - $sqrtExpr';
|
|
||||||
} else {
|
|
||||||
// Negative coefficient
|
|
||||||
final absB = (-simplifiedB).toString();
|
|
||||||
return isPlus ? '-$absB + $sqrtExpr' : '-$absB - $sqrtExpr';
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// Cannot simplify, use fraction form
|
|
||||||
final bStr = b > 0 ? '$bInt' : '($bInt)';
|
|
||||||
final signStr = isPlus ? '+' : '-';
|
|
||||||
final numerator = b > 0
|
|
||||||
? '-$bStr $signStr $sqrtExpr'
|
|
||||||
: '($bInt) $signStr $sqrtExpr';
|
|
||||||
|
|
||||||
if (denominator == 2) {
|
|
||||||
return '\\frac{$numerator}{2}';
|
|
||||||
} else {
|
|
||||||
return '\\frac{$numerator}{$denomStr}';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 格式化复数根的虚部:sqrt(-delta)/(2a)
|
|
||||||
String _formatImaginaryPart(String sqrtExpr, double denominator) {
|
|
||||||
final denomStr = denominator == 2 ? '2' : denominator.toString();
|
|
||||||
|
|
||||||
if (denominator == 2) {
|
|
||||||
return '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{2}i';
|
|
||||||
} else {
|
|
||||||
return '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{$denomStr}i';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 格式化原始方程,保持符号形式
|
/// 格式化原始方程,保持符号形式
|
||||||
String _formatOriginalEquation(String input) {
|
String _formatOriginalEquation(String input) {
|
||||||
// Parse the equation and convert to LaTeX
|
// Parse the equation and convert to LaTeX
|
||||||
@@ -1365,181 +1180,6 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// 解析多项式,保持符号形式
|
|
||||||
Map<int, String> _parsePolynomialSymbolic(String side) {
|
|
||||||
final coeffs = <int, String>{};
|
|
||||||
|
|
||||||
// Use a simpler approach: split by terms and parse each term individually
|
|
||||||
var s = side.replaceAll(' ', ''); // Remove spaces
|
|
||||||
if (!s.startsWith('+') && !s.startsWith('-')) {
|
|
||||||
s = '+$s';
|
|
||||||
}
|
|
||||||
|
|
||||||
// Split by + and - but be more careful about parentheses and functions
|
|
||||||
final terms = <String>[];
|
|
||||||
int start = 0;
|
|
||||||
int parenDepth = 0;
|
|
||||||
|
|
||||||
for (int i = 0; i < s.length; i++) {
|
|
||||||
final char = s[i];
|
|
||||||
|
|
||||||
if (char == '(') {
|
|
||||||
parenDepth++;
|
|
||||||
} else if (char == ')') {
|
|
||||||
parenDepth--;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Only split on + or - when not inside parentheses
|
|
||||||
if (parenDepth == 0 && (char == '+' || char == '-') && i > start) {
|
|
||||||
terms.add(s.substring(start, i));
|
|
||||||
start = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
terms.add(s.substring(start));
|
|
||||||
|
|
||||||
for (final term in terms) {
|
|
||||||
if (term.isEmpty) continue;
|
|
||||||
|
|
||||||
// Parse each term
|
|
||||||
final termPattern = RegExp(r'^([+-]?)(.*?)x(?:\^(\d+))?$|^([+-]?)(.*?)$');
|
|
||||||
final match = termPattern.firstMatch(term);
|
|
||||||
|
|
||||||
if (match != null) {
|
|
||||||
if (match.group(5) != null) {
|
|
||||||
// Constant term
|
|
||||||
final sign = match.group(4) ?? '+';
|
|
||||||
final value = match.group(5)!;
|
|
||||||
final coeffStr = sign == '+' && value.isNotEmpty
|
|
||||||
? value
|
|
||||||
: '$sign$value';
|
|
||||||
coeffs[0] = _combineCoefficients(coeffs[0], coeffStr);
|
|
||||||
} else {
|
|
||||||
// x term
|
|
||||||
final sign = match.group(1) ?? '+';
|
|
||||||
final coeffPart = match.group(2) ?? '';
|
|
||||||
final power = match.group(3) != null ? int.parse(match.group(3)!) : 1;
|
|
||||||
|
|
||||||
String coeffStr;
|
|
||||||
if (coeffPart.isEmpty) {
|
|
||||||
coeffStr = sign == '+' ? '1' : '-1';
|
|
||||||
} else {
|
|
||||||
coeffStr = sign == '+' ? coeffPart : '$sign$coeffPart';
|
|
||||||
}
|
|
||||||
|
|
||||||
coeffs[power] = _combineCoefficients(coeffs[power], coeffStr);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return coeffs;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 合并系数,保持符号形式
|
|
||||||
String _combineCoefficients(String? existing, String newCoeff) {
|
|
||||||
if (existing == null || existing == '0') return newCoeff;
|
|
||||||
if (newCoeff == '0') return existing;
|
|
||||||
|
|
||||||
// 简化逻辑:如果都是数字,可以相加;否则保持原样
|
|
||||||
final existingNum = double.tryParse(existing);
|
|
||||||
final newNum = double.tryParse(newCoeff);
|
|
||||||
|
|
||||||
if (existingNum != null && newNum != null) {
|
|
||||||
final sum = existingNum + newNum;
|
|
||||||
return sum.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
// 如果包含符号表达式,直接连接
|
|
||||||
return '$existing+$newCoeff'.replaceAll('+-', '-');
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 减去系数
|
|
||||||
String _subtractCoefficients(String a, String b) {
|
|
||||||
if (a == '0') return b.startsWith('-') ? b.substring(1) : '-$b';
|
|
||||||
if (b == '0') return a;
|
|
||||||
|
|
||||||
final aNum = double.tryParse(a);
|
|
||||||
final bNum = double.tryParse(b);
|
|
||||||
|
|
||||||
if (aNum != null && bNum != null) {
|
|
||||||
final result = aNum - bNum;
|
|
||||||
return result.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
// 符号表达式相减
|
|
||||||
return '$a-${b.startsWith('-') ? b.substring(1) : b}';
|
|
||||||
}
|
|
||||||
|
|
||||||
/// 计算判别式,保持符号形式
|
|
||||||
String _calculateDeltaSymbolic(String a, String b, String c) {
|
|
||||||
// Delta = b^2 - 4ac
|
|
||||||
|
|
||||||
// 计算 b^2
|
|
||||||
String bSquared;
|
|
||||||
if (b == '0') {
|
|
||||||
bSquared = '0';
|
|
||||||
} else if (b == '1') {
|
|
||||||
bSquared = '1';
|
|
||||||
} else if (b == '-1') {
|
|
||||||
bSquared = '1';
|
|
||||||
} else if (b.startsWith('-')) {
|
|
||||||
final absB = b.substring(1);
|
|
||||||
bSquared = '$absB^2';
|
|
||||||
} else {
|
|
||||||
bSquared = '$b^2';
|
|
||||||
}
|
|
||||||
|
|
||||||
// 计算 4ac
|
|
||||||
String fourAC;
|
|
||||||
if (a == '0' || c == '0') {
|
|
||||||
fourAC = '0';
|
|
||||||
} else {
|
|
||||||
// 处理符号
|
|
||||||
String aCoeff = a;
|
|
||||||
String cCoeff = c;
|
|
||||||
|
|
||||||
// 如果 a 或 c 是负数,需要处理符号
|
|
||||||
bool aNegative = a.startsWith('-');
|
|
||||||
bool cNegative = c.startsWith('-');
|
|
||||||
|
|
||||||
if (aNegative) aCoeff = a.substring(1);
|
|
||||||
if (cNegative) cCoeff = c.substring(1);
|
|
||||||
|
|
||||||
String acProduct;
|
|
||||||
if (aCoeff == '1' && cCoeff == '1') {
|
|
||||||
acProduct = '1';
|
|
||||||
} else if (aCoeff == '1') {
|
|
||||||
acProduct = cCoeff;
|
|
||||||
} else if (cCoeff == '1') {
|
|
||||||
acProduct = aCoeff;
|
|
||||||
} else {
|
|
||||||
acProduct = '$aCoeff \\cdot $cCoeff';
|
|
||||||
}
|
|
||||||
|
|
||||||
// 确定 4ac 的符号
|
|
||||||
bool productNegative = aNegative != cNegative;
|
|
||||||
String fourACValue = '4 \\cdot $acProduct';
|
|
||||||
|
|
||||||
if (productNegative) {
|
|
||||||
fourAC = '-$fourACValue';
|
|
||||||
} else {
|
|
||||||
fourAC = fourACValue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// 计算 Delta = b^2 - 4ac
|
|
||||||
if (bSquared == '0' && fourAC == '0') {
|
|
||||||
return '0';
|
|
||||||
} else if (bSquared == '0') {
|
|
||||||
return fourAC.startsWith('-') ? fourAC.substring(1) : '-$fourAC';
|
|
||||||
} else if (fourAC == '0') {
|
|
||||||
return bSquared;
|
|
||||||
} else {
|
|
||||||
String sign = fourAC.startsWith('-') ? '+' : '-';
|
|
||||||
String absFourAC = fourAC.startsWith('-') ? fourAC.substring(1) : fourAC;
|
|
||||||
return '$bSquared $sign $absFourAC';
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Rational _rationalFromDouble(double value, {int maxPrecision = 12}) {
|
Rational _rationalFromDouble(double value, {int maxPrecision = 12}) {
|
||||||
// 限制小数精度,避免无限循环小数
|
// 限制小数精度,避免无限循环小数
|
||||||
final str = value.toStringAsFixed(maxPrecision);
|
final str = value.toStringAsFixed(maxPrecision);
|
||||||
|
Reference in New Issue
Block a user