🗑️ Clean up code

This commit is contained in:
2025-09-16 01:17:34 +08:00
parent d17084f00f
commit 5a38c8595e

View File

@@ -189,22 +189,21 @@ class SolverService {
// Keep original equation for display
final originalEquation = _formatOriginalEquation(input);
// Parse coefficients symbolically
final leftCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[0]);
final rightCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[1]);
final aSymbolic = _subtractCoefficients(
leftCoeffsSymbolic[2] ?? '0',
rightCoeffsSymbolic[2] ?? '0',
);
final bSymbolic = _subtractCoefficients(
leftCoeffsSymbolic[1] ?? '0',
rightCoeffsSymbolic[1] ?? '0',
);
final cSymbolic = _subtractCoefficients(
leftCoeffsSymbolic[0] ?? '0',
rightCoeffsSymbolic[0] ?? '0',
);
// Parse coefficients symbolically (kept for potential future use)
// final leftCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[0]);
// final rightCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[1]);
// final aSymbolic = _subtractCoefficients(
// leftCoeffsSymbolic[2] ?? '0',
// rightCoeffsSymbolic[2] ?? '0',
// );
// final bSymbolic = _subtractCoefficients(
// leftCoeffsSymbolic[1] ?? '0',
// rightCoeffsSymbolic[1] ?? '0',
// );
// final cSymbolic = _subtractCoefficients(
// leftCoeffsSymbolic[0] ?? '0',
// rightCoeffsSymbolic[0] ?? '0',
// );
// Also get numeric values for calculations
final leftCoeffs = _parsePolynomial(eqParts[0]);
@@ -288,9 +287,6 @@ class SolverService {
// Step 2: Move constant term to the other side
final constantTerm = c / a;
final constantStr = constantTerm >= 0
? '+${constantTerm}'
: constantTerm.toString();
steps.add(
CalculationStep(
@@ -1023,187 +1019,6 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
/// 格式化 Rational 值的平方根表达式,保持符号形式
String _formatSqrtFromRational(Rational value) {
if (value == Rational.zero) return '0';
// 处理负数(用于复数根)
if (value < Rational.zero) {
return '\\sqrt{${(-value).toBigInt()}}';
}
// 尝试将 Rational 转换为完全平方数的形式
// 例如: 4/9 -> 2/3, 9/4 -> 3/2, 25/16 -> 5/4 等
// 首先简化分数
final simplified = value;
// 检查分子和分母是否都是完全平方数
final numerator = simplified.numerator;
final denominator = simplified.denominator;
// 寻找分子和分母的平方根因子
BigInt sqrtNumerator = _findSquareRootFactor(numerator);
BigInt sqrtDenominator = _findSquareRootFactor(denominator);
// 计算剩余的分子和分母
final remainingNumerator = numerator ~/ (sqrtNumerator * sqrtNumerator);
final remainingDenominator =
denominator ~/ (sqrtDenominator * sqrtDenominator);
// 构建结果
String result = '';
// 处理系数部分
if (sqrtNumerator > BigInt.one || sqrtDenominator > BigInt.one) {
if (sqrtNumerator > sqrtDenominator) {
final coeff = sqrtNumerator ~/ sqrtDenominator;
if (coeff > BigInt.one) {
result += '$coeff';
}
} else if (sqrtDenominator > sqrtNumerator) {
// 这会导致分母,需要用分数表示
final coeffNum = sqrtNumerator;
final coeffDen = sqrtDenominator;
if (coeffNum == BigInt.one) {
result += '\\frac{1}{$coeffDen}';
} else {
result += '\\frac{$coeffNum}{$coeffDen}';
}
}
}
// 处理根号部分
if (remainingNumerator == BigInt.one &&
remainingDenominator == BigInt.one) {
// 没有根号部分
if (result.isEmpty) {
return '1';
}
} else if (remainingNumerator == remainingDenominator) {
// 根号部分约分后为1
if (result.isEmpty) {
return '1';
}
} else {
// 需要根号
String sqrtContent = '';
if (remainingDenominator == BigInt.one) {
sqrtContent = '$remainingNumerator';
} else {
sqrtContent = '\\frac{$remainingNumerator}{$remainingDenominator}';
}
if (result.isEmpty) {
result = '\\sqrt{$sqrtContent}';
} else {
result += '\\sqrt{$sqrtContent}';
}
}
return result.isEmpty ? '1' : result;
}
/// 寻找一个大整数的平方根因子
BigInt _findSquareRootFactor(BigInt n) {
if (n <= BigInt.one) return BigInt.one;
BigInt factor = BigInt.one;
BigInt i = BigInt.two;
while (i * i <= n) {
BigInt count = BigInt.zero;
while (n % (i * i) == BigInt.zero) {
n = n ~/ (i * i);
count += BigInt.one;
}
if (count > BigInt.zero) {
factor = factor * i;
}
i += BigInt.one;
}
return factor;
}
/// 格式化二次方程的根:(-b ± sqrt(delta)) / (2a)
String _formatQuadraticRoot(
double b,
Rational delta,
double denominator,
bool isPlus,
) {
final denomInt = denominator.toInt();
final denomStr = denominator == 2 ? '2' : denominator.toString();
// Format sqrt(delta) symbolically using the Rational value
final sqrtExpr = _formatSqrtFromRational(delta);
if (b == 0) {
// 简化为 ±sqrt(delta)/denominator
if (denominator == 2) {
return isPlus ? '\\frac{$sqrtExpr}{2}' : '-\\frac{$sqrtExpr}{2}';
} else {
return isPlus
? '\\frac{$sqrtExpr}{$denomStr}'
: '-\\frac{$sqrtExpr}{$denomStr}';
}
} else {
// 完整的表达式:(-b ± sqrt(delta))/denominator
final bInt = b.toInt();
// Check if b is divisible by denominator for simplification
if (bInt % denomInt == 0) {
// Can simplify: b/denominator becomes integer
final simplifiedB = bInt ~/ denomInt;
if (simplifiedB == 0) {
// Just the sqrt part with correct sign
return isPlus ? sqrtExpr : '-$sqrtExpr';
} else if (simplifiedB == 1) {
// +1 * sqrt part
return isPlus ? '1 + $sqrtExpr' : '1 - $sqrtExpr';
} else if (simplifiedB == -1) {
// -1 * sqrt part
return isPlus ? '-1 + $sqrtExpr' : '-1 - $sqrtExpr';
} else if (simplifiedB > 0) {
// Positive coefficient
return isPlus
? '$simplifiedB + $sqrtExpr'
: '$simplifiedB - $sqrtExpr';
} else {
// Negative coefficient
final absB = (-simplifiedB).toString();
return isPlus ? '-$absB + $sqrtExpr' : '-$absB - $sqrtExpr';
}
} else {
// Cannot simplify, use fraction form
final bStr = b > 0 ? '$bInt' : '($bInt)';
final signStr = isPlus ? '+' : '-';
final numerator = b > 0
? '-$bStr $signStr $sqrtExpr'
: '($bInt) $signStr $sqrtExpr';
if (denominator == 2) {
return '\\frac{$numerator}{2}';
} else {
return '\\frac{$numerator}{$denomStr}';
}
}
}
}
/// 格式化复数根的虚部sqrt(-delta)/(2a)
String _formatImaginaryPart(String sqrtExpr, double denominator) {
final denomStr = denominator == 2 ? '2' : denominator.toString();
if (denominator == 2) {
return '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{2}i';
} else {
return '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{$denomStr}i';
}
}
/// 格式化原始方程,保持符号形式
String _formatOriginalEquation(String input) {
// Parse the equation and convert to LaTeX
@@ -1365,181 +1180,6 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
return result;
}
/// 解析多项式,保持符号形式
Map<int, String> _parsePolynomialSymbolic(String side) {
final coeffs = <int, String>{};
// Use a simpler approach: split by terms and parse each term individually
var s = side.replaceAll(' ', ''); // Remove spaces
if (!s.startsWith('+') && !s.startsWith('-')) {
s = '+$s';
}
// Split by + and - but be more careful about parentheses and functions
final terms = <String>[];
int start = 0;
int parenDepth = 0;
for (int i = 0; i < s.length; i++) {
final char = s[i];
if (char == '(') {
parenDepth++;
} else if (char == ')') {
parenDepth--;
}
// Only split on + or - when not inside parentheses
if (parenDepth == 0 && (char == '+' || char == '-') && i > start) {
terms.add(s.substring(start, i));
start = i;
}
}
terms.add(s.substring(start));
for (final term in terms) {
if (term.isEmpty) continue;
// Parse each term
final termPattern = RegExp(r'^([+-]?)(.*?)x(?:\^(\d+))?$|^([+-]?)(.*?)$');
final match = termPattern.firstMatch(term);
if (match != null) {
if (match.group(5) != null) {
// Constant term
final sign = match.group(4) ?? '+';
final value = match.group(5)!;
final coeffStr = sign == '+' && value.isNotEmpty
? value
: '$sign$value';
coeffs[0] = _combineCoefficients(coeffs[0], coeffStr);
} else {
// x term
final sign = match.group(1) ?? '+';
final coeffPart = match.group(2) ?? '';
final power = match.group(3) != null ? int.parse(match.group(3)!) : 1;
String coeffStr;
if (coeffPart.isEmpty) {
coeffStr = sign == '+' ? '1' : '-1';
} else {
coeffStr = sign == '+' ? coeffPart : '$sign$coeffPart';
}
coeffs[power] = _combineCoefficients(coeffs[power], coeffStr);
}
}
}
return coeffs;
}
/// 合并系数,保持符号形式
String _combineCoefficients(String? existing, String newCoeff) {
if (existing == null || existing == '0') return newCoeff;
if (newCoeff == '0') return existing;
// 简化逻辑:如果都是数字,可以相加;否则保持原样
final existingNum = double.tryParse(existing);
final newNum = double.tryParse(newCoeff);
if (existingNum != null && newNum != null) {
final sum = existingNum + newNum;
return sum.toString();
}
// 如果包含符号表达式,直接连接
return '$existing+$newCoeff'.replaceAll('+-', '-');
}
/// 减去系数
String _subtractCoefficients(String a, String b) {
if (a == '0') return b.startsWith('-') ? b.substring(1) : '-$b';
if (b == '0') return a;
final aNum = double.tryParse(a);
final bNum = double.tryParse(b);
if (aNum != null && bNum != null) {
final result = aNum - bNum;
return result.toString();
}
// 符号表达式相减
return '$a-${b.startsWith('-') ? b.substring(1) : b}';
}
/// 计算判别式,保持符号形式
String _calculateDeltaSymbolic(String a, String b, String c) {
// Delta = b^2 - 4ac
// 计算 b^2
String bSquared;
if (b == '0') {
bSquared = '0';
} else if (b == '1') {
bSquared = '1';
} else if (b == '-1') {
bSquared = '1';
} else if (b.startsWith('-')) {
final absB = b.substring(1);
bSquared = '$absB^2';
} else {
bSquared = '$b^2';
}
// 计算 4ac
String fourAC;
if (a == '0' || c == '0') {
fourAC = '0';
} else {
// 处理符号
String aCoeff = a;
String cCoeff = c;
// 如果 a 或 c 是负数,需要处理符号
bool aNegative = a.startsWith('-');
bool cNegative = c.startsWith('-');
if (aNegative) aCoeff = a.substring(1);
if (cNegative) cCoeff = c.substring(1);
String acProduct;
if (aCoeff == '1' && cCoeff == '1') {
acProduct = '1';
} else if (aCoeff == '1') {
acProduct = cCoeff;
} else if (cCoeff == '1') {
acProduct = aCoeff;
} else {
acProduct = '$aCoeff \\cdot $cCoeff';
}
// 确定 4ac 的符号
bool productNegative = aNegative != cNegative;
String fourACValue = '4 \\cdot $acProduct';
if (productNegative) {
fourAC = '-$fourACValue';
} else {
fourAC = fourACValue;
}
}
// 计算 Delta = b^2 - 4ac
if (bSquared == '0' && fourAC == '0') {
return '0';
} else if (bSquared == '0') {
return fourAC.startsWith('-') ? fourAC.substring(1) : '-$fourAC';
} else if (fourAC == '0') {
return bSquared;
} else {
String sign = fourAC.startsWith('-') ? '+' : '-';
String absFourAC = fourAC.startsWith('-') ? fourAC.substring(1) : fourAC;
return '$bSquared $sign $absFourAC';
}
}
Rational _rationalFromDouble(double value, {int maxPrecision = 12}) {
// 限制小数精度,避免无限循环小数
final str = value.toStringAsFixed(maxPrecision);