✨ Add latex generating in steps
This commit is contained in:
@@ -56,13 +56,12 @@ class SolverService {
|
||||
final steps = <CalculationStep>[];
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第一步:表达式求值",
|
||||
explanation: "这是一个标准的数学表达式,我们将直接计算其结果。",
|
||||
title: '第一步:表达式求值',
|
||||
explanation: '这是一个标准的数学表达式,我们将直接计算其结果。',
|
||||
formula: input,
|
||||
),
|
||||
);
|
||||
|
||||
// **FIXED**: Correct usage of the math_expressions library
|
||||
Parser p = Parser();
|
||||
Expression exp = p.parse(input);
|
||||
ContextModel cm = ContextModel();
|
||||
@@ -75,134 +74,118 @@ class SolverService {
|
||||
CalculationResult _solveLinearEquation(String input) {
|
||||
final steps = <CalculationStep>[];
|
||||
steps.add(
|
||||
CalculationStep(title: "原方程", explanation: "这是一元一次方程。", formula: input),
|
||||
CalculationStep(
|
||||
title: '原方程',
|
||||
explanation: '这是一元一次方程。',
|
||||
formula: '\$\$$input\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// 解析方程: ax+b=cx+d
|
||||
final parts = _parseLinearEquation(input);
|
||||
final a = parts.a, b = parts.b, c = parts.c, d = parts.d;
|
||||
|
||||
// 移项合并
|
||||
final newA = a - c;
|
||||
final newD = d - b;
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第一步:移项",
|
||||
explanation: "将所有含 x 的项移到等式左边,常数项移到右边。",
|
||||
title: '第一步:移项',
|
||||
explanation: '将所有含 x 的项移到等式左边,常数项移到右边。',
|
||||
formula:
|
||||
"${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}",
|
||||
'\$\$${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第二步:合并同类项",
|
||||
explanation: "合并等式两边的项。",
|
||||
formula: "${newA}x = $newD",
|
||||
title: '第二步:合并同类项',
|
||||
explanation: '合并等式两边的项。',
|
||||
formula: '\$\$${newA}x = $newD\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// 求解x
|
||||
if (newA == 0) {
|
||||
if (newD == 0) {
|
||||
return CalculationResult(steps: steps, finalAnswer: "有无穷多解");
|
||||
} else {
|
||||
return CalculationResult(steps: steps, finalAnswer: "无解");
|
||||
}
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: newD == 0 ? '有无穷多解' : '无解',
|
||||
);
|
||||
}
|
||||
|
||||
final x = newD / newA;
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第三步:求解 x",
|
||||
explanation: "两边同时除以 x 的系数 ($newA)。",
|
||||
formula: "x = $newD / $newA",
|
||||
title: '第三步:求解 x',
|
||||
explanation: '两边同时除以 x 的系数 ($newA)。',
|
||||
formula: '\$\$x = \frac{$newD}{$newA}\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
return CalculationResult(steps: steps, finalAnswer: "x = $x");
|
||||
return CalculationResult(steps: steps, finalAnswer: '\$\$x = $x\$\$');
|
||||
}
|
||||
|
||||
/// 3. 求解一元二次方程 (升级版)
|
||||
CalculationResult _solveQuadraticEquation(String input) {
|
||||
final steps = <CalculationStep>[];
|
||||
|
||||
// 整理成 ax^2+bx+c=0 的形式并提取系数
|
||||
final eqParts = input.split('=');
|
||||
if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。");
|
||||
|
||||
final leftCoeffs = _parsePolynomial(eqParts[0]);
|
||||
final rightCoeffs = _parsePolynomial(eqParts[1]);
|
||||
|
||||
// 移项合并
|
||||
final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0);
|
||||
final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0);
|
||||
final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0);
|
||||
|
||||
if (a == 0) {
|
||||
// 如果 a=0, 这实际上是一个一元一次方程
|
||||
return _solveLinearEquation("${b}x+${c}=0");
|
||||
return _solveLinearEquation('${b}x+$c=0');
|
||||
}
|
||||
|
||||
// **FIXED**: Corrected typo 'ax' to 'a'
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第一步:整理方程",
|
||||
explanation: "将方程整理成标准形式 ax^2+bx+c=0。",
|
||||
title: '第一步:整理方程',
|
||||
explanation: r'将方程整理成标准形式 $ax^2+bx+c=0$。',
|
||||
formula:
|
||||
"${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0",
|
||||
'\$\$${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// 尝试因式分解 (十字相乘法)
|
||||
if (a == a.round() && b == b.round() && c == c.round()) {
|
||||
final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt());
|
||||
if (factors != null) {
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第二步:因式分解法 (十字相乘)",
|
||||
explanation: "我们发现可以将方程分解为两个一次因式的乘积。",
|
||||
title: '第二步:因式分解法 (十字相乘)',
|
||||
explanation: '我们发现可以将方程分解为两个一次因式的乘积。',
|
||||
formula: factors.formula,
|
||||
),
|
||||
);
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第三步:求解",
|
||||
explanation: "分别令每个因式等于 0,解出 x。",
|
||||
formula: "解得 ${factors.solution}",
|
||||
title: '第三步:求解',
|
||||
explanation: '分别令每个因式等于 0,解出 x。',
|
||||
formula: '解得 ${factors.solution}',
|
||||
),
|
||||
);
|
||||
|
||||
return CalculationResult(steps: steps, finalAnswer: factors.solution);
|
||||
} else {
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第二步:选择解法",
|
||||
explanation: "尝试因式分解失败,我们选择使用求根公式法。",
|
||||
formula: "\$\\Delta = b^2 - 4ac\$",
|
||||
),
|
||||
);
|
||||
}
|
||||
} else {
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第二步:选择解法",
|
||||
explanation: "系数包含小数,我们使用求根公式法。",
|
||||
formula: "\$\\Delta = b^2 - 4ac\$",
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
// 使用求根公式法
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: '第二步:选择解法',
|
||||
explanation: '无法进行因式分解,我们选择使用求根公式法。',
|
||||
formula: r'\$\$\Delta = b^2 - 4ac\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
final delta = b * b - 4 * a * c;
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第三步:计算判别式 (Delta)",
|
||||
explanation: "\$\\Delta = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta",
|
||||
// **FIXED**: Removed unnecessary braces for linter warning
|
||||
formula: "\$\\Delta = $delta",
|
||||
title: '第三步:计算判别式 (Delta)',
|
||||
explanation:
|
||||
'\$\$\Delta = b^2 - 4ac = ($b)^2 - 4 \cdot ($a) \cdot ($c) = $delta\$\$',
|
||||
formula: '\$\$\Delta = $delta\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
@@ -211,40 +194,40 @@ class SolverService {
|
||||
final x2 = (-b - sqrt(delta)) / (2 * a);
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第四步:应用求根公式",
|
||||
title: '第四步:应用求根公式',
|
||||
explanation:
|
||||
"因为 \$\\Delta > 0\$,方程有两个不相等的实数根。公式: \$x = \\frac{-b \\pm \\sqrt{\\Delta}}{2a}\$",
|
||||
r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。',
|
||||
formula:
|
||||
"x₁ = ${x1.toStringAsFixed(4)}, x₂ = ${x2.toStringAsFixed(4)}",
|
||||
'\$\$x_1 = ${x1.toStringAsFixed(4)}, \quad x_2 = ${x2.toStringAsFixed(4)}\$\$',
|
||||
),
|
||||
);
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer:
|
||||
"x₁ = ${x1.toStringAsFixed(4)}, x₂ = ${x2.toStringAsFixed(4)}",
|
||||
'\$\$x_1 = ${x1.toStringAsFixed(4)}, \quad x_2 = ${x2.toStringAsFixed(4)}\$\$',
|
||||
);
|
||||
} else if (delta == 0) {
|
||||
final x = -b / (2 * a);
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第四步:应用求根公式",
|
||||
explanation: "因为 \$\Delta = 0\$,方程有两个相等的实数根。",
|
||||
formula: "x₁ = x₂ = ${x.toStringAsFixed(4)}",
|
||||
title: '第四步:应用求根公式',
|
||||
explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。',
|
||||
formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
|
||||
),
|
||||
);
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: "x₁ = x₂ = ${x.toStringAsFixed(4)}",
|
||||
finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
|
||||
);
|
||||
} else {
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第四步:判断解",
|
||||
explanation: "因为 \$\Delta < 0\$,该方程在实数范围内无解。",
|
||||
formula: "无实数解",
|
||||
title: '第四步:判断解',
|
||||
explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解。',
|
||||
formula: '无实数解',
|
||||
),
|
||||
);
|
||||
return CalculationResult(steps: steps, finalAnswer: "无实数解");
|
||||
return CalculationResult(steps: steps, finalAnswer: '无实数解');
|
||||
}
|
||||
}
|
||||
|
||||
@@ -262,32 +245,44 @@ class SolverService {
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "原始方程组",
|
||||
explanation: "这是一个二元一次方程组,我们将使用加减消元法求解。",
|
||||
title: '原始方程组',
|
||||
explanation: '这是一个二元一次方程组,我们将使用加减消元法求解。',
|
||||
formula:
|
||||
"${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 ---(1)\n${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 ---(2)",
|
||||
'''
|
||||
|
||||
egin{cases}
|
||||
${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 & (1) \\
|
||||
${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 & (2)
|
||||
\\end{cases}
|
||||
|
||||
''',
|
||||
),
|
||||
);
|
||||
|
||||
final det = a1 * b2 - a2 * b1;
|
||||
if (det == 0) {
|
||||
if (a1 * c2 - a2 * c1 == 0) {
|
||||
return CalculationResult(steps: steps, finalAnswer: "有无穷多解");
|
||||
} else {
|
||||
return CalculationResult(steps: steps, finalAnswer: "无解");
|
||||
}
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: a1 * c2 - a2 * c1 == 0 ? '有无穷多解' : '无解',
|
||||
);
|
||||
}
|
||||
|
||||
final newA1 = a1 * b2, newC1 = c1 * b2;
|
||||
final newA2 = a2 * b1, newC2 = c2 * b1;
|
||||
|
||||
// **FIXED**: Wrapped calculations in braces {} for string interpolation
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第一步:消元",
|
||||
explanation: "为了消去变量 y,将方程(1)两边乘以 $b2\$,方程(2)两边乘以 $b1\$。",
|
||||
title: '第一步:消元',
|
||||
explanation: '为了消去变量 y,将方程(1)两边乘以 $b2,方程(2)两边乘以 $b1。',
|
||||
formula:
|
||||
"${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 ---(3)\n${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 ---(4)",
|
||||
'''
|
||||
|
||||
egin{cases}
|
||||
${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 & (3) \\
|
||||
${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 & (4)
|
||||
\\end{cases}
|
||||
|
||||
''',
|
||||
),
|
||||
);
|
||||
|
||||
@@ -296,79 +291,96 @@ class SolverService {
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第二步:相减",
|
||||
explanation: "将方程(3)减去方程(4),得到一个只含 x 的方程。",
|
||||
title: '第二步:相减',
|
||||
explanation: '将方程(3)减去方程(4),得到一个只含 x 的方程。',
|
||||
formula:
|
||||
"($newA1 - $newA2)x = $newC1 - $newC2 \n=> ${xCoeff}x = $constCoeff",
|
||||
'\$\$($newA1 - $newA2)x = $newC1 - $newC2 \Rightarrow ${xCoeff}x = $constCoeff\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
final x = constCoeff / xCoeff;
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第三步:解出 x",
|
||||
explanation: "求解上述方程得到 x 的值。",
|
||||
formula: "x = $x",
|
||||
title: '第三步:解出 x',
|
||||
explanation: '求解上述方程得到 x 的值。',
|
||||
formula: '\$\$x = $x\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// **FIXED**: Added a check for b1 to avoid division by zero if we substitute into an equation without y.
|
||||
if (b1.abs() < 1e-9) {
|
||||
// If b1 is very close to 0, use the second equation
|
||||
final yCoeff = b2;
|
||||
final yConst = c2 - a2 * x;
|
||||
final y = yConst / yCoeff;
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第四步:回代求解 y",
|
||||
explanation: "将 x = $x 代入原方程(2)中。",
|
||||
// **FIXED**: Corrected string interpolation for calculations and substitutions
|
||||
title: '第四步:回代求解 y',
|
||||
explanation: '将 x = $x 代入原方程(2)中。',
|
||||
formula:
|
||||
"${a2}(${x}) + ${b2}y = $c2 \n=> ${a2 * x} + ${b2}y = $c2 \n=> ${b2}y = $c2 - ${a2 * x} \n=> ${b2}y = ${c2 - a2 * x}",
|
||||
'''
|
||||
|
||||
\\begin{aligned}
|
||||
$a2($x) + ${b2}y &= $c2 \\
|
||||
${a2 * x} + ${b2}y &= $c2 \\
|
||||
${b2}y &= $c2 - ${a2 * x} \\
|
||||
${b2}y &= ${c2 - a2 * x}
|
||||
\\end{aligned}
|
||||
|
||||
''',
|
||||
),
|
||||
);
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第五步:解出 y",
|
||||
explanation: "求解得到 y 的值。",
|
||||
formula: "y = $y",
|
||||
title: '第五步:解出 y',
|
||||
explanation: '求解得到 y 的值。',
|
||||
formula: '\$\$y = $y\$\$',
|
||||
),
|
||||
);
|
||||
return CalculationResult(steps: steps, finalAnswer: "x = $x, y = $y");
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: '\$\$x = $x, \quad y = $y\$\$',
|
||||
);
|
||||
} else {
|
||||
// Default case, substitute into the first equation
|
||||
final yCoeff = b1;
|
||||
final yConst = c1 - a1 * x;
|
||||
final y = yConst / yCoeff;
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第四步:回代求解 y",
|
||||
explanation: "将 x = $x 代入原方程(1)中。",
|
||||
title: '第四步:回代求解 y',
|
||||
explanation: '将 x = $x 代入原方程(1)中。',
|
||||
formula:
|
||||
"${a1}(${x}) + ${b1}y = $c1 \n=> ${a1 * x} + ${b1}y = $c1 \n=> ${b1}y = $c1 - ${a1 * x} \n=> ${b1}y = ${c1 - a1 * x}",
|
||||
'''
|
||||
|
||||
\\begin{aligned}
|
||||
$a1($x) + ${b1}y &= $c1 \\
|
||||
${a1 * x} + ${b1}y &= $c1 \\
|
||||
${b1}y &= $c1 - ${a1 * x} \\
|
||||
${b1}y &= ${c1 - a1 * x}
|
||||
\\end{aligned}
|
||||
|
||||
''',
|
||||
),
|
||||
);
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
title: "第五步:解出 y",
|
||||
explanation: "求解得到 y 的值。",
|
||||
formula: "y = $y",
|
||||
title: '第五步:解出 y',
|
||||
explanation: '求解得到 y 的值。',
|
||||
formula: '\$\$y = $y\$\$',
|
||||
),
|
||||
);
|
||||
return CalculationResult(steps: steps, finalAnswer: "x = $x, y = $y");
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: '\$\$x = $x, \\quad y = $y\$\$',
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// ---- 辅助函数 ----
|
||||
|
||||
/// 展开表达式,例如 (x-1)(x+2) -> x^2+x-2
|
||||
String _expandExpressions(String input) {
|
||||
String result = input;
|
||||
// 循环直到没有更多的表达式可以展开
|
||||
while (true) {
|
||||
String oldResult = result;
|
||||
|
||||
// 模式1: k*(ax+b)^2, 例如 4(x-1)^2 or (x-1)^2
|
||||
final powerMatch = RegExp(
|
||||
r'(-?\d*\.?\d*)?\(([^)]+)\)\^2',
|
||||
).firstMatch(result);
|
||||
@@ -376,11 +388,7 @@ class SolverService {
|
||||
final kStr = powerMatch.group(1);
|
||||
double k = 1.0;
|
||||
if (kStr != null && kStr.isNotEmpty) {
|
||||
if (kStr == '-') {
|
||||
k = -1.0;
|
||||
} else {
|
||||
k = double.parse(kStr);
|
||||
}
|
||||
k = kStr == '-' ? -1.0 : double.parse(kStr);
|
||||
}
|
||||
|
||||
final factor = powerMatch.group(2)!;
|
||||
@@ -388,18 +396,16 @@ class SolverService {
|
||||
final a = coeffs[1] ?? 0;
|
||||
final b = coeffs[0] ?? 0;
|
||||
|
||||
// (ax+b)^2 = a^2*x^2 + 2ab*x + b^2
|
||||
final newA = k * a * a;
|
||||
final newB = k * 2 * a * b;
|
||||
final newC = k * b * b;
|
||||
|
||||
final expanded =
|
||||
"${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}${newC}";
|
||||
result = result.replaceFirst(powerMatch.group(0)!, "($expanded)");
|
||||
continue; // 重新开始循环以处理嵌套表达式
|
||||
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
|
||||
result = result.replaceFirst(powerMatch.group(0)!, '($expanded)');
|
||||
continue;
|
||||
}
|
||||
|
||||
// 模式2: (ax+b)(cx+d), 例如 (x-3)(x+2)
|
||||
final factorMulMatch = RegExp(
|
||||
r'\(([^)]+)\)\(([^)]+)\)',
|
||||
).firstMatch(result);
|
||||
@@ -414,21 +420,17 @@ class SolverService {
|
||||
final c = coeffs2[1] ?? 0;
|
||||
final d = coeffs2[0] ?? 0;
|
||||
|
||||
// (ax+b)(cx+d) = ac*x^2 + (ad+bc)*x + bd
|
||||
final newA = a * c;
|
||||
final newB = a * d + b * c;
|
||||
final newC = b * d;
|
||||
|
||||
final expanded =
|
||||
"${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}${newC}";
|
||||
result = result.replaceFirst(factorMulMatch.group(0)!, "($expanded)");
|
||||
continue; // 重新开始循环
|
||||
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
|
||||
result = result.replaceFirst(factorMulMatch.group(0)!, '($expanded)');
|
||||
continue;
|
||||
}
|
||||
|
||||
// 如果在这次迭代中没有改变,则跳出循环
|
||||
if (result == oldResult) {
|
||||
break;
|
||||
}
|
||||
if (result == oldResult) break;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@@ -440,18 +442,18 @@ class SolverService {
|
||||
final leftCoeffs = _parsePolynomial(parts[0]);
|
||||
final rightCoeffs = _parsePolynomial(parts[1]);
|
||||
|
||||
final a = leftCoeffs[1] ?? 0.0;
|
||||
final b = leftCoeffs[0] ?? 0.0;
|
||||
final c = rightCoeffs[1] ?? 0.0;
|
||||
final d = rightCoeffs[0] ?? 0.0;
|
||||
|
||||
return LinearEquationParts(a, b, c, d);
|
||||
return LinearEquationParts(
|
||||
(leftCoeffs[1] ?? 0.0),
|
||||
(leftCoeffs[0] ?? 0.0),
|
||||
(rightCoeffs[1] ?? 0.0),
|
||||
(rightCoeffs[0] ?? 0.0),
|
||||
);
|
||||
}
|
||||
|
||||
Map<int, double> _parsePolynomial(String side) {
|
||||
final coeffs = <int, double>{};
|
||||
final pattern = RegExp(
|
||||
r'([+-]?(?:\d*\.?\d*))?x(?:\^(\d+))?|([+-]?\d*\.?\d+)',
|
||||
r'([+-]?(?:\d*\.?\d*)?)x(?:\^(\d+))?|([+-]?\d*\.?\d+)',
|
||||
);
|
||||
var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side';
|
||||
|
||||
@@ -463,11 +465,7 @@ class SolverService {
|
||||
String coeffStr = match.group(1) ?? '+';
|
||||
double coeff = 1.0;
|
||||
if (coeffStr.isNotEmpty && coeffStr != '+') {
|
||||
if (coeffStr == '-') {
|
||||
coeff = -1.0;
|
||||
} else {
|
||||
coeff = double.parse(coeffStr);
|
||||
}
|
||||
coeff = coeffStr == '-' ? -1.0 : double.parse(coeffStr);
|
||||
} else if (coeffStr == '-') {
|
||||
coeff = -1.0;
|
||||
}
|
||||
@@ -486,7 +484,7 @@ class SolverService {
|
||||
final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]);
|
||||
if (xMatch != null) {
|
||||
final coeff = xMatch.group(1);
|
||||
if (coeff == null || coeff == '+') {
|
||||
if (coeff == null || coeff.isEmpty || coeff == '+') {
|
||||
a = 1.0;
|
||||
} else if (coeff == '-') {
|
||||
a = -1.0;
|
||||
@@ -497,7 +495,7 @@ class SolverService {
|
||||
final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]);
|
||||
if (yMatch != null) {
|
||||
final coeff = yMatch.group(1);
|
||||
if (coeff == null || coeff == '+') {
|
||||
if (coeff == null || coeff.isEmpty || coeff == '+') {
|
||||
b = 1.0;
|
||||
} else if (coeff == '-') {
|
||||
b = -1.0;
|
||||
@@ -523,10 +521,7 @@ class SolverService {
|
||||
return null;
|
||||
}
|
||||
|
||||
// **FIXED**: Simplified check method
|
||||
bool check(int m, int n, int b) {
|
||||
return m + n == b;
|
||||
}
|
||||
bool check(int m, int n, int b) => m + n == b;
|
||||
|
||||
({String formula, String solution}) formatFactor(int m, int n, int a) {
|
||||
int common = gcd(n.abs(), a.abs());
|
||||
@@ -538,25 +533,23 @@ class SolverService {
|
||||
final a2 = a ~/ den;
|
||||
final c2 = m ~/ a2;
|
||||
|
||||
// **FIXED**: Correctly handle coefficients of 1
|
||||
final f1Part1 = a1 == 1 ? 'x' : '${a1}x';
|
||||
final f1 = c1 == 0 ? f1Part1 : "$f1Part1 ${c1 >= 0 ? '+' : ''} $c1";
|
||||
final f1 = c1 == 0 ? f1Part1 : '$f1Part1 ${c1 >= 0 ? '+' : ''} $c1';
|
||||
|
||||
final f2Part1 = a2 == 1 ? 'x' : '${a2}x';
|
||||
final f2 = c2 == 0 ? f2Part1 : "$f2Part1 ${c2 >= 0 ? '+' : ''} $c2";
|
||||
final f2 = c2 == 0 ? f2Part1 : '$f2Part1 ${c2 >= 0 ? '+' : ''} $c2';
|
||||
|
||||
// **FIXED**: Renamed variables to lowerCamelCase
|
||||
final int x1Num = -c1, x1Den = a1;
|
||||
final int x2Num = -c2, x2Den = a2;
|
||||
|
||||
final sol1 = x1Den == 1 ? "$x1Num" : "$x1Num/$x1Den";
|
||||
final sol2 = x2Den == 1 ? "$x2Num" : "$x2Num/$x2Den";
|
||||
final sol1 = x1Den == 1 ? '$x1Num' : '\\frac{$x1Num}{$x1Den}';
|
||||
final sol2 = x2Den == 1 ? '$x2Num' : '\\frac{$x2Num}{$x2Den}';
|
||||
|
||||
final solution = x1Num * x2Den == x2Num * x1Den
|
||||
? "x₁ = x₂ = $sol1"
|
||||
: "x₁ = $sol1, x₂ = $sol2";
|
||||
? 'x_1 = x_2 = $sol1'
|
||||
: 'x_1 = $sol1, \\quad x_2 = $sol2';
|
||||
|
||||
return (formula: "(${f1})(${f2}) = 0", solution: solution);
|
||||
return (formula: '\$\$($f1)($f2) = 0\$\$', solution: '\$\$$solution\$\$');
|
||||
}
|
||||
|
||||
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
|
||||
|
Reference in New Issue
Block a user