💄 Optimize styling

This commit is contained in:
2025-09-13 01:20:09 +08:00
parent 4cf035f2f1
commit a9a1680f5d
4 changed files with 163 additions and 71 deletions

576
lib/solver.dart Normal file
View File

@@ -0,0 +1,576 @@
import 'dart:math';
import 'package:flutter/foundation.dart'; // For kDebugMode
import 'package:math_expressions/math_expressions.dart';
import 'models/calculation_step.dart';
/// 帮助解析一元一次方程 ax+b=cx+d 的辅助类
class LinearEquationParts {
final double a, b, c, d;
LinearEquationParts(this.a, this.b, this.c, this.d);
}
class SolverService {
/// 主入口方法,识别并分发任务
CalculationResult solve(String input) {
// 预处理输入字符串
final cleanInput = input.replaceAll(' ', '').toLowerCase();
// 对包含x的方程进行预处理展开表达式
String processedInput = cleanInput;
if (processedInput.contains('x') && processedInput.contains('(')) {
processedInput = _expandExpressions(processedInput);
}
// 1. 检查是否为二元一次方程组 (格式: ...;...)
if (processedInput.contains(';') &&
processedInput.contains('x') &&
processedInput.contains('y')) {
return _solveSystemOfLinearEquations(processedInput);
}
// 2. 检查是否为一元二次方程 (包含 x^2 或 x²)
if (processedInput.contains('x^2') || processedInput.contains('')) {
return _solveQuadraticEquation(processedInput.replaceAll('', 'x^2'));
}
// 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2)
if (processedInput.contains('x') && !processedInput.contains('y')) {
return _solveLinearEquation(processedInput);
}
// 4. 如果都不是,则作为简单表达式计算
try {
return _solveSimpleExpression(input); // 使用原始输入以保留运算符
} catch (e) {
if (kDebugMode) {
print(e);
}
throw Exception('无法识别的格式。请检查您的方程或表达式。');
}
}
/// ---- 求解器实现 ----
/// 1. 求解简单表达式
CalculationResult _solveSimpleExpression(String input) {
final steps = <CalculationStep>[];
steps.add(
CalculationStep(
stepNumber: 1,
title: '表达式求值',
explanation: '这是一个标准的数学表达式,我们将直接计算其结果。',
formula: input,
),
);
GrammarParser p = GrammarParser();
Expression exp = p.parse(input);
final result = RealEvaluator().evaluate(exp);
return CalculationResult(steps: steps, finalAnswer: result.toString());
}
/// 2. 求解一元一次方程
CalculationResult _solveLinearEquation(String input) {
final steps = <CalculationStep>[];
steps.add(
CalculationStep(
stepNumber: 0,
title: '原方程',
explanation: '这是一元一次方程。',
formula: '\$\$$input\$\$',
),
);
final parts = _parseLinearEquation(input);
final a = parts.a, b = parts.b, c = parts.c, d = parts.d;
final newA = a - c;
final newD = d - b;
steps.add(
CalculationStep(
stepNumber: 1,
title: '移项',
explanation: '将所有含 x 的项移到等式左边,常数项移到右边。',
formula:
'\$\$${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}\$\$',
),
);
steps.add(
CalculationStep(
stepNumber: 2,
title: '合并同类项',
explanation: '合并等式两边的项。',
formula: '\$\$${newA}x = $newD\$\$',
),
);
if (newA == 0) {
return CalculationResult(
steps: steps,
finalAnswer: newD == 0 ? '有无穷多解' : '无解',
);
}
final x = newD / newA;
steps.add(
CalculationStep(
stepNumber: 3,
title: '求解 x',
explanation: '两边同时除以 x 的系数 ($newA)。',
formula: '\$\$x = \frac{$newD}{$newA}\$\$',
),
);
return CalculationResult(steps: steps, finalAnswer: '\$\$x = $x\$\$');
}
/// 3. 求解一元二次方程 (升级版)
CalculationResult _solveQuadraticEquation(String input) {
final steps = <CalculationStep>[];
final eqParts = input.split('=');
if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。");
final leftCoeffs = _parsePolynomial(eqParts[0]);
final rightCoeffs = _parsePolynomial(eqParts[1]);
final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0);
final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0);
final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0);
if (a == 0) {
return _solveLinearEquation('${b}x+$c=0');
}
steps.add(
CalculationStep(
stepNumber: 1,
title: '整理方程',
explanation: r'将方程整理成标准形式 ax^2+bx+c=0。',
formula:
'\$\$${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0\$\$',
),
);
if (a == a.round() && b == b.round() && c == c.round()) {
final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt());
if (factors != null) {
steps.add(
CalculationStep(
stepNumber: 2,
title: '因式分解法 (十字相乘)',
explanation: '我们发现可以将方程分解为两个一次因式的乘积。',
formula: factors.formula,
),
);
steps.add(
CalculationStep(
stepNumber: 3,
title: '求解',
explanation: '分别令每个因式等于 0解出 x。',
formula: factors.solution,
),
);
return CalculationResult(steps: steps, finalAnswer: factors.solution);
}
}
steps.add(
CalculationStep(
stepNumber: 2,
title: '选择解法',
explanation: '无法进行因式分解,我们选择使用求根公式法。',
formula: '\$\$\\Delta = b^2 - 4ac\$\$',
),
);
final delta = b * b - 4 * a * c;
steps.add(
CalculationStep(
stepNumber: 3,
title: '计算判别式 (Delta)',
explanation:
'\$\$\\Delta = b^2 - 4ac = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta\$\$',
formula: '\$\$\\Delta = $delta\$\$',
),
);
if (delta > 0) {
final x1 = (-b + sqrt(delta)) / (2 * a);
final x2 = (-b - sqrt(delta)) / (2 * a);
steps.add(
CalculationStep(
stepNumber: 4,
title: '应用求根公式',
explanation:
r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。',
formula:
'\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$',
),
);
return CalculationResult(
steps: steps,
finalAnswer:
'\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$',
);
} else if (delta == 0) {
final x = -b / (2 * a);
steps.add(
CalculationStep(
stepNumber: 4,
title: '应用求根公式',
explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。',
formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
),
);
return CalculationResult(
steps: steps,
finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
);
} else {
steps.add(
CalculationStep(
stepNumber: 4,
title: '判断解',
explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解。',
formula: '无实数解',
),
);
return CalculationResult(steps: steps, finalAnswer: '无实数解');
}
}
/// 4. 求解二元一次方程组
CalculationResult _solveSystemOfLinearEquations(String input) {
final steps = <CalculationStep>[];
final equations = input.split(';');
if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。");
final p1 = _parseTwoVariableLinear(equations[0]);
final p2 = _parseTwoVariableLinear(equations[1]);
double a1 = p1[0], b1 = p1[1], c1 = p1[2];
double a2 = p2[0], b2 = p2[1], c2 = p2[2];
steps.add(
CalculationStep(
stepNumber: 0,
title: '原始方程组',
explanation: '这是一个二元一次方程组,我们将使用加减消元法求解。',
formula:
'''
\\begin{cases}
${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 & (1) \\
${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 & (2)
\\end{cases}
''',
),
);
final det = a1 * b2 - a2 * b1;
if (det == 0) {
return CalculationResult(
steps: steps,
finalAnswer: a1 * c2 - a2 * c1 == 0 ? '有无穷多解' : '无解',
);
}
final newA1 = a1 * b2, newC1 = c1 * b2;
final newA2 = a2 * b1, newC2 = c2 * b1;
steps.add(
CalculationStep(
stepNumber: 1,
title: '消元',
explanation: '为了消去变量 y将方程(1)两边乘以 $b2,方程(2)两边乘以 $b1',
formula:
'''
\\begin{cases}
${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 & (3) \\
${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 & (4)
\\end{cases}
''',
),
);
final xCoeff = newA1 - newA2;
final constCoeff = newC1 - newC2;
steps.add(
CalculationStep(
stepNumber: 2,
title: '相减',
explanation: '将方程(3)减去方程(4),得到一个只含 x 的方程。',
formula:
'\$\$($newA1 - $newA2)x = $newC1 - $newC2 \\Rightarrow ${xCoeff}x = $constCoeff\$\$',
),
);
final x = constCoeff / xCoeff;
steps.add(
CalculationStep(
stepNumber: 3,
title: '解出 x',
explanation: '求解上述方程得到 x 的值。',
formula: '\$\$x = $x\$\$',
),
);
if (b1.abs() < 1e-9) {
final yCoeff = b2;
final yConst = c2 - a2 * x;
final y = yConst / yCoeff;
steps.add(
CalculationStep(
stepNumber: 4,
title: '回代求解 y',
explanation: '将 x = $x 代入原方程(2)中。',
formula:
'''
\\begin{aligned}
$a2($x) + ${b2}y &= $c2 \\
${a2 * x} + ${b2}y &= $c2 \\
${b2}y &= $c2 - ${a2 * x} \\
${b2}y &= ${c2 - a2 * x}
\\end{aligned}
''',
),
);
steps.add(
CalculationStep(
stepNumber: 5,
title: '解出 y',
explanation: '求解得到 y 的值。',
formula: '\$\$y = $y\$\$',
),
);
return CalculationResult(
steps: steps,
finalAnswer: '\$\$x = $x, \\quad y = $y\$\$',
);
} else {
final yCoeff = b1;
final yConst = c1 - a1 * x;
final y = yConst / yCoeff;
steps.add(
CalculationStep(
stepNumber: 4,
title: '回代求解 y',
explanation: '将 x = $x 代入原方程(1)中。',
formula:
'''
\\begin{aligned}
$a1($x) + ${b1}y &= $c1 \\
${a1 * x} + ${b1}y &= $c1 \\
${b1}y &= $c1 - ${a1 * x} \\
${b1}y &= ${c1 - a1 * x}
\\end{aligned}
''',
),
);
steps.add(
CalculationStep(
stepNumber: 5,
title: '解出 y',
explanation: '求解得到 y 的值。',
formula: '\$\$y = $y\$\$',
),
);
return CalculationResult(
steps: steps,
finalAnswer: '\$\$x = $x, \\quad y = $y\$\$',
);
}
}
/// ---- 辅助函数 ----
String _expandExpressions(String input) {
String result = input;
while (true) {
String oldResult = result;
final powerMatch = RegExp(
r'(-?\d*\.?\d*)?\(([^)]+)\)\^2',
).firstMatch(result);
if (powerMatch != null) {
final kStr = powerMatch.group(1);
double k = 1.0;
if (kStr != null && kStr.isNotEmpty) {
k = kStr == '-' ? -1.0 : double.parse(kStr);
}
final factor = powerMatch.group(2)!;
final coeffs = _parsePolynomial(factor);
final a = coeffs[1] ?? 0;
final b = coeffs[0] ?? 0;
final newA = k * a * a;
final newB = k * 2 * a * b;
final newC = k * b * b;
final expanded =
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
result = result.replaceFirst(powerMatch.group(0)!, '($expanded)');
continue;
}
final factorMulMatch = RegExp(
r'\(([^)]+)\)\(([^)]+)\)',
).firstMatch(result);
if (factorMulMatch != null) {
final factor1 = factorMulMatch.group(1)!;
final factor2 = factorMulMatch.group(2)!;
final coeffs1 = _parsePolynomial(factor1);
final coeffs2 = _parsePolynomial(factor2);
final a = coeffs1[1] ?? 0;
final b = coeffs1[0] ?? 0;
final c = coeffs2[1] ?? 0;
final d = coeffs2[0] ?? 0;
final newA = a * c;
final newB = a * d + b * c;
final newC = b * d;
final expanded =
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
result = result.replaceFirst(factorMulMatch.group(0)!, '($expanded)');
continue;
}
if (result == oldResult) break;
}
return result;
}
LinearEquationParts _parseLinearEquation(String input) {
final parts = input.split('=');
if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。");
final leftCoeffs = _parsePolynomial(parts[0]);
final rightCoeffs = _parsePolynomial(parts[1]);
return LinearEquationParts(
(leftCoeffs[1] ?? 0.0),
(leftCoeffs[0] ?? 0.0),
(rightCoeffs[1] ?? 0.0),
(rightCoeffs[0] ?? 0.0),
);
}
Map<int, double> _parsePolynomial(String side) {
final coeffs = <int, double>{};
final pattern = RegExp(
r'([+-]?(?:\d*\.?\d*)?)x(?:\^(\d+))?|([+-]?\d*\.?\d+)',
);
var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side';
for (final match in pattern.allMatches(s)) {
if (match.group(3) != null) {
coeffs[0] = (coeffs[0] ?? 0) + double.parse(match.group(3)!);
} else {
int power = match.group(2) != null ? int.parse(match.group(2)!) : 1;
String coeffStr = match.group(1) ?? '+';
double coeff = 1.0;
if (coeffStr.isNotEmpty && coeffStr != '+') {
coeff = coeffStr == '-' ? -1.0 : double.parse(coeffStr);
} else if (coeffStr == '-') {
coeff = -1.0;
}
coeffs[power] = (coeffs[power] ?? 0) + coeff;
}
}
return coeffs;
}
List<double> _parseTwoVariableLinear(String equation) {
final parts = equation.split('=');
if (parts.length != 2) throw Exception("方程 $equation 格式错误");
final c = double.tryParse(parts[1]) ?? 0.0;
double a = 0, b = 0;
final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]);
if (xMatch != null) {
final coeff = xMatch.group(1);
if (coeff == null || coeff.isEmpty || coeff == '+') {
a = 1.0;
} else if (coeff == '-') {
a = -1.0;
} else {
a = double.tryParse(coeff) ?? 0.0;
}
}
final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]);
if (yMatch != null) {
final coeff = yMatch.group(1);
if (coeff == null || coeff.isEmpty || coeff == '+') {
b = 1.0;
} else if (coeff == '-') {
b = -1.0;
} else {
b = double.tryParse(coeff) ?? 0.0;
}
}
return [a, b, c];
}
({String formula, String solution})? _tryFactorization(int a, int b, int c) {
if (a == 0) return null;
int ac = a * c;
for (int i = 1; i <= sqrt(ac.abs()); i++) {
if (ac % i == 0) {
int j = ac ~/ i;
if (check(i, j, b)) return formatFactor(i, j, a);
if (check(-i, -j, b)) return formatFactor(-i, -j, a);
if (check(i, -j, b)) return formatFactor(i, -j, a);
if (check(-i, j, b)) return formatFactor(-i, j, a);
}
}
return null;
}
bool check(int m, int n, int b) => m + n == b;
({String formula, String solution}) formatFactor(int m, int n, int a) {
int common = gcd(n.abs(), a.abs());
int num = n ~/ common;
int den = a ~/ common;
final a1 = den;
final c1 = num;
final a2 = a ~/ den;
final c2 = m ~/ a2;
final f1Part1 = a1 == 1 ? 'x' : '${a1}x';
final f1 = c1 == 0 ? f1Part1 : '$f1Part1 ${c1 >= 0 ? '+' : ''} $c1';
final f2Part1 = a2 == 1 ? 'x' : '${a2}x';
final f2 = c2 == 0 ? f2Part1 : '$f2Part1 ${c2 >= 0 ? '+' : ''} $c2';
final int x1Num = -c1, x1Den = a1;
final int x2Num = -c2, x2Den = a2;
final sol1 = x1Den == 1 ? '$x1Num' : '\\frac{$x1Num}{$x1Den}';
final sol2 = x2Den == 1 ? '$x2Num' : '\\frac{$x2Num}{$x2Den}';
final solution = x1Num * x2Den == x2Num * x1Den
? 'x_1 = x_2 = $sol1'
: 'x_1 = $sol1, \\quad x_2 = $sol2';
return (formula: '\$\$($f1)($f2) = 0\$\$', solution: '\$\$$solution\$\$');
}
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
}