✨ 配方法
This commit is contained in:
325
lib/solver.dart
325
lib/solver.dart
@@ -261,93 +261,129 @@ class SolverService {
|
||||
CalculationStep(
|
||||
stepNumber: 2,
|
||||
title: '选择解法',
|
||||
explanation: '无法进行因式分解,我们选择使用求根公式法。',
|
||||
formula: '\$\$\\Delta = b^2 - 4ac\$\$',
|
||||
explanation: '无法进行因式分解,我们选择使用配方法。',
|
||||
formula: r'配方法:$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$',
|
||||
),
|
||||
);
|
||||
|
||||
// Calculate delta symbolically
|
||||
final deltaSymbolic = _calculateDeltaSymbolic(
|
||||
aSymbolic,
|
||||
bSymbolic,
|
||||
cSymbolic,
|
||||
);
|
||||
final delta =
|
||||
_rationalFromDouble(b).pow(2) -
|
||||
Rational.fromInt(4) * _rationalFromDouble(a) * _rationalFromDouble(c);
|
||||
// Step 1: Divide by a if a ≠ 1
|
||||
String currentEquation;
|
||||
if (a == 1) {
|
||||
currentEquation =
|
||||
'x^2 ${b >= 0 ? "+" : ""}${b}x ${c >= 0 ? "+" : ""}$c = 0';
|
||||
} else {
|
||||
final aStr = a == -1 ? '-' : a.toString();
|
||||
currentEquation =
|
||||
'\\frac{1}{$aStr}(x^2 ${b >= 0 ? "+" : ""}${b}x ${c >= 0 ? "+" : ""}$c) = 0';
|
||||
}
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 3,
|
||||
title: '计算判别式 (Delta)',
|
||||
explanation: '\$\$\\Delta = b^2 - 4ac = $deltaSymbolic\$\$',
|
||||
formula:
|
||||
'\$\$\\Delta = $deltaSymbolic = ${delta.toDouble().toStringAsFixed(4)}\$\$',
|
||||
title: '方程变形',
|
||||
explanation: a == 1 ? '方程已经是标准形式。' : '将方程两边同时除以 $a。',
|
||||
formula: '\$\$${currentEquation}\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
final deltaDouble = delta.toDouble();
|
||||
if (deltaDouble > 0) {
|
||||
// Pass delta directly to maintain precision
|
||||
final x1Expr = _formatQuadraticRoot(-b, delta, 2 * a, true);
|
||||
final x2Expr = _formatQuadraticRoot(-b, delta, 2 * a, false);
|
||||
// Step 2: Move constant term to the other side
|
||||
final constantTerm = c / a;
|
||||
final constantStr = constantTerm >= 0
|
||||
? '+${constantTerm}'
|
||||
: constantTerm.toString();
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 4,
|
||||
title: '移项',
|
||||
explanation: '将常数项移到方程右边。',
|
||||
formula: '\$\$x^2 ${b >= 0 ? "+" : ""}${b}x = ${-constantTerm}\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// Step 3: Complete the square
|
||||
final halfCoeff = b / (2 * a);
|
||||
final completeSquareTerm = halfCoeff * halfCoeff;
|
||||
final completeStr = completeSquareTerm >= 0
|
||||
? '+${completeSquareTerm}'
|
||||
: completeSquareTerm.toString();
|
||||
|
||||
final xTerm = halfCoeff >= 0 ? "+${halfCoeff}" : halfCoeff.toString();
|
||||
final rightSide = "${-constantTerm} ${completeStr}";
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 5,
|
||||
title: '配方',
|
||||
explanation:
|
||||
'在方程两边同时加上 \$(\\frac{b}{2a})^2 = ${completeSquareTerm}\$ 以配成完全平方。',
|
||||
formula: '\$\$(x ${xTerm})^2 = $rightSide\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// Step 4: Simplify right side
|
||||
final rightSideValue = -constantTerm + completeSquareTerm;
|
||||
final rightSideStrValue = rightSideValue >= 0
|
||||
? rightSideValue.toString()
|
||||
: '(${rightSideValue})';
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 6,
|
||||
title: '化简',
|
||||
explanation: '合并右边的常数项。',
|
||||
formula:
|
||||
'\$\$(x ${halfCoeff >= 0 ? "+" : ""}${halfCoeff})^2 = $rightSideStrValue\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// Step 5: Take square root - check for symbolic representation
|
||||
final symbolicSqrt = _getSymbolicSquareRoot(rightSideValue);
|
||||
final sqrtStr = rightSideValue >= 0
|
||||
? (symbolicSqrt ?? sqrt(rightSideValue.abs()).toString())
|
||||
: '${sqrt(rightSideValue.abs()).toString()}i';
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 7,
|
||||
title: '开方',
|
||||
explanation: '对方程两边同时开平方。',
|
||||
formula:
|
||||
'\$\$x ${halfCoeff >= 0 ? "+" : ""}${halfCoeff} = \\pm $sqrtStr\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
// Step 6: Solve for x - use symbolic forms when possible
|
||||
if (rightSideValue >= 0) {
|
||||
final roots = _calculateSymbolicRoots(a, b, rightSideValue, symbolicSqrt);
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 4,
|
||||
title: '应用求根公式',
|
||||
explanation:
|
||||
r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。',
|
||||
formula: '\$\$x_1 = $x1Expr, \\quad x_2 = $x2Expr\$\$',
|
||||
stepNumber: 8,
|
||||
title: '解出 x',
|
||||
explanation: '分别取正负号,解出 x 的值。',
|
||||
formula: roots.formula,
|
||||
),
|
||||
);
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: '\$\$x_1 = $x1Expr, \\quad x_2 = $x2Expr\$\$',
|
||||
);
|
||||
} else if (deltaDouble == 0) {
|
||||
final x = -b / (2 * a);
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 4,
|
||||
title: '应用求根公式',
|
||||
explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。',
|
||||
formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
|
||||
),
|
||||
);
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
|
||||
);
|
||||
|
||||
return CalculationResult(steps: steps, finalAnswer: roots.finalAnswer);
|
||||
} else {
|
||||
// Complex roots
|
||||
final imagPart = sqrt(rightSideValue.abs());
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 4,
|
||||
title: '判断解',
|
||||
explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解,但有虚数解。',
|
||||
formula: '无实数解,有虚数解',
|
||||
),
|
||||
);
|
||||
|
||||
// For complex roots, we need to handle -delta
|
||||
final negDelta = -delta;
|
||||
final sqrtNegDeltaStr = _formatSqrtFromRational(negDelta);
|
||||
final realPart = -b / (2 * a);
|
||||
final imagPartExpr = _formatImaginaryPart(sqrtNegDeltaStr, 2 * a);
|
||||
|
||||
steps.add(
|
||||
CalculationStep(
|
||||
stepNumber: 5,
|
||||
title: '计算虚数根',
|
||||
explanation: '使用求根公式计算虚数根。',
|
||||
formula: r'$$x = \frac{-b \pm \sqrt{-\Delta} i}{2a}$$',
|
||||
stepNumber: 8,
|
||||
title: '解出 x',
|
||||
explanation: '方程在实数范围内无解,但有虚数解。',
|
||||
formula:
|
||||
'\$\$x_1 = ${-halfCoeff} + ${imagPart}i, \\quad x_2 = ${-halfCoeff} - ${imagPart}i\$\$',
|
||||
),
|
||||
);
|
||||
|
||||
return CalculationResult(
|
||||
steps: steps,
|
||||
finalAnswer:
|
||||
'\$\$x_1 = ${realPart.toStringAsFixed(4)} + $imagPartExpr, \\quad x_2 = ${realPart.toStringAsFixed(4)} - $imagPartExpr\$\$',
|
||||
'\$\$x_1 = ${-halfCoeff} + ${imagPart}i, \\quad x_2 = ${-halfCoeff} - ${imagPart}i\$\$',
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1522,6 +1558,169 @@ ${b1}y &= ${c1 - a1 * x.toDouble()}
|
||||
return Rational(numerator, denominator);
|
||||
}
|
||||
|
||||
/// 检查数值是否可以表示为符号平方根形式
|
||||
String? _getSymbolicSquareRoot(double value) {
|
||||
if (value <= 0) return null;
|
||||
|
||||
// 对于完全平方数,直接返回整数平方根
|
||||
final sqrtValue = sqrt(value);
|
||||
final intSqrt = sqrtValue.toInt();
|
||||
if ((sqrtValue - intSqrt).abs() < 1e-10) {
|
||||
return intSqrt.toString();
|
||||
}
|
||||
|
||||
// 检查是否可以表示为 k√m 的形式,其中 m 不是完全平方数
|
||||
// 遍历可能的 k 值,从大到小
|
||||
for (int k = sqrt(value).toInt(); k >= 2; k--) {
|
||||
final kSquared = k * k;
|
||||
if (kSquared > value) continue;
|
||||
|
||||
final remaining = value / kSquared;
|
||||
final remainingSqrt = sqrt(remaining);
|
||||
final intRemainingSqrt = remainingSqrt.toInt();
|
||||
|
||||
// 检查剩余部分是否为完全平方数
|
||||
if ((remainingSqrt - intRemainingSqrt).abs() < 1e-10) {
|
||||
// 找到匹配:value = k² * m,其中 m 是完全平方数
|
||||
if (intRemainingSqrt == 1) {
|
||||
return k.toString(); // k√1 = k
|
||||
} else {
|
||||
return '$k\\sqrt{$intRemainingSqrt}';
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 特殊情况:检查是否为简单的分数形式,如 48 = 16*3 = 4²*3
|
||||
// 对于 value = 48, k = 4, remaining = 48/16 = 3, sqrt(3) ≈ 1.732, intRemainingSqrt = 1
|
||||
// 但 1.732 != 1, 所以上面的循环不会匹配
|
||||
// 我们需要检查 remaining 是否是整数且不是完全平方数
|
||||
final intValue = value.toInt();
|
||||
if (value == intValue.toDouble()) {
|
||||
// 尝试找到最大的完全平方因子
|
||||
int maxK = 1;
|
||||
for (int k = 2; k * k <= intValue; k++) {
|
||||
if (intValue % (k * k) == 0) {
|
||||
maxK = k;
|
||||
}
|
||||
}
|
||||
|
||||
if (maxK > 1) {
|
||||
final remaining = intValue ~/ (maxK * maxK);
|
||||
if (remaining > 1) {
|
||||
return '$maxK\\sqrt{$remaining}';
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return null; // 无法用简单符号形式表示
|
||||
}
|
||||
|
||||
/// 计算符号形式的二次方程根
|
||||
({String formula, String finalAnswer}) _calculateSymbolicRoots(
|
||||
double a,
|
||||
double b,
|
||||
double discriminant,
|
||||
String? symbolicSqrt,
|
||||
) {
|
||||
final halfCoeff = b / (2 * a);
|
||||
final denominator = 2 * a;
|
||||
|
||||
String formula;
|
||||
String finalAnswer;
|
||||
|
||||
if (symbolicSqrt != null) {
|
||||
// 使用符号形式
|
||||
final sqrtExpr = symbolicSqrt;
|
||||
|
||||
// 计算根:(-b ± sqrt(discriminant)) / (2a)
|
||||
final root1Expr = _formatSymbolicRoot(-b, sqrtExpr, denominator, true);
|
||||
final root2Expr = _formatSymbolicRoot(-b, sqrtExpr, denominator, false);
|
||||
|
||||
formula = '\$\$x_1 = $root1Expr, \\quad x_2 = $root2Expr\$\$';
|
||||
finalAnswer = '\$\$x_1 = $root1Expr, \\quad x_2 = $root2Expr\$\$';
|
||||
} else {
|
||||
// 回退到数值计算
|
||||
final sqrtValue = sqrt(discriminant);
|
||||
final x1 = -halfCoeff + sqrtValue;
|
||||
final x2 = -halfCoeff - sqrtValue;
|
||||
|
||||
formula =
|
||||
'\$\$x_1 = ${-halfCoeff} + $sqrtValue = $x1, \\quad x_2 = ${-halfCoeff} - $sqrtValue = $x2\$\$';
|
||||
finalAnswer = '\$\$x_1 = $x1, \\quad x_2 = $x2\$\$';
|
||||
}
|
||||
|
||||
return (formula: formula, finalAnswer: finalAnswer);
|
||||
}
|
||||
|
||||
/// 格式化符号形式的根
|
||||
String _formatSymbolicRoot(
|
||||
double b,
|
||||
String sqrtExpr,
|
||||
double denominator,
|
||||
bool isPlus,
|
||||
) {
|
||||
final sign = isPlus ? '+' : '-';
|
||||
|
||||
// 处理分母
|
||||
final denomStr = denominator == 2 ? '2' : denominator.toString();
|
||||
|
||||
if (b == 0) {
|
||||
// 简化为 ±sqrt(discriminant)/denominator
|
||||
if (denominator == 2) {
|
||||
return isPlus ? '\\frac{$sqrtExpr}{2}' : '-\\frac{$sqrtExpr}{2}';
|
||||
} else {
|
||||
return isPlus
|
||||
? '\\frac{$sqrtExpr}{$denomStr}'
|
||||
: '-\\frac{$sqrtExpr}{$denomStr}';
|
||||
}
|
||||
} else {
|
||||
// 完整的表达式:(-b ± sqrt(discriminant))/denominator
|
||||
final bInt = b.toInt();
|
||||
|
||||
// 检查是否可以简化
|
||||
if (bInt % denominator.toInt() == 0) {
|
||||
final simplifiedB = bInt ~/ denominator.toInt();
|
||||
|
||||
if (simplifiedB == 0) {
|
||||
return isPlus ? sqrtExpr : '-$sqrtExpr';
|
||||
} else if (simplifiedB == 1) {
|
||||
return isPlus
|
||||
? '1 $sign $sqrtExpr'
|
||||
: '1 $sign $sqrtExpr'.replaceAll('+', '-').replaceAll('--', '+');
|
||||
} else if (simplifiedB == -1) {
|
||||
return isPlus
|
||||
? '-1 $sign $sqrtExpr'
|
||||
: '-1 $sign $sqrtExpr'.replaceAll('+', '-').replaceAll('--', '+');
|
||||
} else if (simplifiedB > 0) {
|
||||
return isPlus
|
||||
? '$simplifiedB $sign $sqrtExpr'
|
||||
: '$simplifiedB $sign $sqrtExpr'
|
||||
.replaceAll('+', '-')
|
||||
.replaceAll('--', '+');
|
||||
} else {
|
||||
final absB = (-simplifiedB).toString();
|
||||
return isPlus
|
||||
? '-$absB $sign $sqrtExpr'
|
||||
: '-$absB $sign $sqrtExpr'
|
||||
.replaceAll('+', '-')
|
||||
.replaceAll('--', '+');
|
||||
}
|
||||
} else {
|
||||
// 无法简化,使用分数形式
|
||||
final bStr = b > 0 ? '$bInt' : '($bInt)';
|
||||
final numerator = b > 0
|
||||
? '-$bStr $sign $sqrtExpr'
|
||||
: '($bInt) $sign $sqrtExpr';
|
||||
|
||||
if (denominator == 2) {
|
||||
return '\\frac{$numerator}{2}';
|
||||
} else {
|
||||
return '\\frac{$numerator}{$denomStr}';
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 测试方法:验证修复效果
|
||||
void testParenthesesFix() {
|
||||
print('=== 测试括号修复效果 ===');
|
||||
|
Reference in New Issue
Block a user