More root available

This commit is contained in:
2025-09-16 18:56:16 +08:00
parent 656f29623b
commit dd4a9f524e
4 changed files with 389 additions and 49 deletions

View File

@@ -197,11 +197,17 @@ class AddExpr extends Expr {
return DoubleExpr(l.value + r.numerator / r.denominator); return DoubleExpr(l.value + r.numerator / r.denominator);
} }
// 合并同类的 sqrt 项: a*sqrt(X) + b*sqrt(X) = (a+b)*sqrt(X) // 合并同类的项: a*root(X,n) + b*root(X,n) = (a+b)*root(X,n)
var a = _asSqrtTerm(l); var a = _asRootTerm(l);
var b = _asSqrtTerm(r); var b = _asRootTerm(r);
if (a != null && b != null && a.inner.toString() == b.inner.toString()) { if (a != null &&
return MulExpr(IntExpr(a.coef + b.coef), SqrtExpr(a.inner)).simplify(); b != null &&
a.inner.toString() == b.inner.toString() &&
a.index == b.index) {
return MulExpr(
IntExpr(a.coef + b.coef),
SqrtExpr(a.inner, a.index),
).simplify();
} }
return AddExpr(l, r); return AddExpr(l, r);
@@ -286,11 +292,17 @@ class SubExpr extends Expr {
return DoubleExpr(l.value - r.numerator / r.denominator); return DoubleExpr(l.value - r.numerator / r.denominator);
} }
// 处理同类 sqrt 项: a*sqrt(X) - b*sqrt(X) = (a-b)*sqrt(X) // 处理同类项: a*root(X,n) - b*root(X,n) = (a-b)*root(X,n)
var a = _asSqrtTerm(l); var a = _asRootTerm(l);
var b = _asSqrtTerm(r); var b = _asRootTerm(r);
if (a != null && b != null && a.inner.toString() == b.inner.toString()) { if (a != null &&
return MulExpr(IntExpr(a.coef - b.coef), SqrtExpr(a.inner)).simplify(); b != null &&
a.inner.toString() == b.inner.toString() &&
a.index == b.index) {
return MulExpr(
IntExpr(a.coef - b.coef),
SqrtExpr(a.inner, a.index),
).simplify();
} }
return SubExpr(l, r); return SubExpr(l, r);
@@ -390,11 +402,9 @@ class MulExpr extends Expr {
return DoubleExpr(l.value * r.numerator / r.denominator); return DoubleExpr(l.value * r.numerator / r.denominator);
} }
// sqrt * sqrt: sqrt(a)*sqrt(a) = a // 根号相乘: root(a,n)*root(b,n) = root(a*b,n)
if (l is SqrtExpr && if (l is SqrtExpr && r is SqrtExpr && l.index == r.index) {
r is SqrtExpr && return SqrtExpr(MulExpr(l.inner, r.inner), l.index).simplify();
l.inner.toString() == r.inner.toString()) {
return l.inner.simplify();
} }
// int * sqrt -> 保留形式,之后 simplify() 再处理约分 // int * sqrt -> 保留形式,之后 simplify() 再处理约分
@@ -523,28 +533,51 @@ class DivExpr extends Expr {
// === SqrtExpr.evaluate === // === SqrtExpr.evaluate ===
class SqrtExpr extends Expr { class SqrtExpr extends Expr {
final Expr inner; final Expr inner;
SqrtExpr(this.inner); final int index; // 根的次数默认为2平方根
SqrtExpr(this.inner, [this.index = 2]);
@override @override
Expr simplify() { Expr simplify() {
var i = inner.simplify(); var i = inner.simplify();
if (i is IntExpr) { if (i is IntExpr) {
int n = i.value; int n = i.value;
int root = sqrt(n).floor(); if (index == 2) {
if (root * root == n) { // 平方根的特殊处理
return IntExpr(root); // 完全平方数 int root = sqrt(n).floor();
} if (root * root == n) {
// 尝试拆分 sqrt比如 sqrt(8) = 2*sqrt(2) return IntExpr(root); // 完全平方数
for (int k = root; k > 1; k--) { }
if (n % (k * k) == 0) { // 尝试拆分 sqrt比如 sqrt(8) = 2*sqrt(2)
return MulExpr( for (int k = root; k > 1; k--) {
IntExpr(k), if (n % (k * k) == 0) {
SqrtExpr(IntExpr(n ~/ (k * k))), return MulExpr(
).simplify(); IntExpr(k),
SqrtExpr(IntExpr(n ~/ (k * k))),
).simplify();
}
}
} else {
// 任意次根的处理
// 检查是否为完全 n 次幂
if (n >= 0) {
int root = (pow(n, 1.0 / index)).round();
if ((pow(root, index) - n).abs() < 1e-10) {
return IntExpr(root); // 完全 n 次幂
}
// 尝试提取系数比如对于立方根27^(1/3) = 3
for (int k = root; k > 1; k--) {
int power = (pow(k, index)).round();
if (n % power == 0) {
return MulExpr(
IntExpr(k),
SqrtExpr(IntExpr(n ~/ power), index),
).simplify();
}
}
} }
} }
} }
return SqrtExpr(i); return SqrtExpr(i, index);
} }
@override @override
@@ -552,27 +585,50 @@ class SqrtExpr extends Expr {
var i = inner.evaluate(); var i = inner.evaluate();
if (i is IntExpr) { if (i is IntExpr) {
int n = i.value; int n = i.value;
int root = sqrt(n).floor(); if (index == 2) {
if (root * root == n) return IntExpr(root); // 平方根的特殊处理
// 拆平方因子并返回 k * sqrt(remain) int root = sqrt(n).floor();
for (int k = root; k > 1; k--) { if (root * root == n) return IntExpr(root);
if (n % (k * k) == 0) { // 拆平方因子并返回 k * sqrt(remain)
return MulExpr( for (int k = root; k > 1; k--) {
IntExpr(k), if (n % (k * k) == 0) {
SqrtExpr(IntExpr(n ~/ (k * k))), return MulExpr(
).evaluate(); IntExpr(k),
SqrtExpr(IntExpr(n ~/ (k * k))),
).evaluate();
}
}
} else {
// 任意次根的数值计算
if (n >= 0) {
double result = pow(n.toDouble(), 1.0 / index).toDouble();
return DoubleExpr(result);
} }
} }
} }
return SqrtExpr(i); if (i is DoubleExpr) {
double result = pow(i.value, 1.0 / index).toDouble();
return DoubleExpr(result);
}
if (i is FractionExpr) {
double result = pow(i.numerator / i.denominator, 1.0 / index).toDouble();
return DoubleExpr(result);
}
return SqrtExpr(i, index);
} }
@override @override
Expr substitute(String varName, Expr value) => Expr substitute(String varName, Expr value) =>
SqrtExpr(inner.substitute(varName, value)); SqrtExpr(inner.substitute(varName, value), index);
@override @override
String toString() => "\\sqrt{${inner.toString()}}"; String toString() {
if (index == 2) {
return "\\sqrt{${inner.toString()}}";
} else {
return "\\sqrt[$index]{${inner.toString()}}";
}
}
} }
// === CosExpr === // === CosExpr ===
@@ -970,22 +1026,31 @@ class PercentExpr extends Expr {
String toString() => "$inner%"; String toString() => "$inner%";
} }
// === 辅助:识别 a * sqrt(X) 形式 === // 扩展 _SqrtTerm 以支持任意次根
class _SqrtTerm { class _RootTerm {
final int coef; final int coef;
final Expr inner; final Expr inner;
_SqrtTerm(this.coef, this.inner); final int index;
_RootTerm(this.coef, this.inner, this.index);
} }
_SqrtTerm? _asSqrtTerm(Expr e) { _RootTerm? _asRootTerm(Expr e) {
if (e is SqrtExpr) return _SqrtTerm(1, e.inner); if (e is SqrtExpr) return _RootTerm(1, e.inner, e.index);
if (e is MulExpr) { if (e is MulExpr) {
// 可能为 Int * Sqrt or Sqrt * Int // 可能为 Int * Sqrt or Sqrt * Int
if (e.left is IntExpr && e.right is SqrtExpr) { if (e.left is IntExpr && e.right is SqrtExpr) {
return _SqrtTerm((e.left as IntExpr).value, (e.right as SqrtExpr).inner); return _RootTerm(
(e.left as IntExpr).value,
(e.right as SqrtExpr).inner,
(e.right as SqrtExpr).index,
);
} }
if (e.right is IntExpr && e.left is SqrtExpr) { if (e.right is IntExpr && e.left is SqrtExpr) {
return _SqrtTerm((e.right as IntExpr).value, (e.left as SqrtExpr).inner); return _RootTerm(
(e.right as IntExpr).value,
(e.left as SqrtExpr).inner,
(e.left as SqrtExpr).index,
);
} }
} }
return null; return null;

View File

@@ -100,6 +100,21 @@ class Parser {
if (current != ')') throw Exception("sqrt 缺少 )"); if (current != ')') throw Exception("sqrt 缺少 )");
eat(); eat();
expr = SqrtExpr(inner); expr = SqrtExpr(inner);
} else if (input.startsWith("root", pos)) {
pos += 4;
if (current != '(') throw Exception("root 缺少 (");
eat();
var indexExpr = parse();
if (current != ',') throw Exception("root 缺少 ,");
eat();
var inner = parse();
if (current != ')') throw Exception("root 缺少 )");
eat();
if (indexExpr is IntExpr) {
expr = SqrtExpr(inner, indexExpr.value);
} else {
throw Exception("root 的第一个参数必须是整数");
}
} else if (input.startsWith("cos", pos)) { } else if (input.startsWith("cos", pos)) {
pos += 3; pos += 3;
if (current != '(') throw Exception("cos 缺少 ("); if (current != '(') throw Exception("cos 缺少 (");

View File

@@ -23,7 +23,24 @@ class SolverService {
processedInput = _expandExpressions(processedInput); processedInput = _expandExpressions(processedInput);
} }
// 0. 检查是否是 a(expr)^2 = b 的形式 // 0. 检查是否是 (expr)^n = constant 的形式(任意次幂)
final powerEqMatch = RegExp(
r'^\(([^)]+)\)\^(\d+)\s*=\s*(.+)$',
).firstMatch(cleanInput);
if (powerEqMatch != null) {
final exprStr = powerEqMatch.group(1)!;
final powerStr = powerEqMatch.group(2)!;
final rightStr = powerEqMatch.group(3)!;
final n = int.parse(powerStr);
final rightValue = double.tryParse(rightStr);
if (rightValue != null) {
return _solveGeneralPowerEquation(exprStr, n, rightValue, cleanInput);
}
}
// 0.5. 检查是否是 a(expr)^2 = b 的形式(向后兼容)
final squareEqMatch = RegExp( final squareEqMatch = RegExp(
r'^(\d*\.?\d*)\(([^)]+)\)\^2\s*=\s*(.+)$', r'^(\d*\.?\d*)\(([^)]+)\)\^2\s*=\s*(.+)$',
).firstMatch(cleanInput); ).firstMatch(cleanInput);
@@ -106,7 +123,12 @@ class SolverService {
return _solveQuadraticEquation(processedInput.replaceAll('', 'x^2')); return _solveQuadraticEquation(processedInput.replaceAll('', 'x^2'));
} }
// 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2) // 3. 检查是否为次方程 (x^n = a 的形式)
if (processedInput.contains('x^') && processedInput.contains('=')) {
return _solvePowerEquation(processedInput);
}
// 4. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2)
if (processedInput.contains('x') && !processedInput.contains('y')) { if (processedInput.contains('x') && !processedInput.contains('y')) {
return _solveLinearEquation(processedInput); return _solveLinearEquation(processedInput);
} }
@@ -425,6 +447,183 @@ class SolverService {
} }
} }
/// 3.5. 求解通用幂次方程 ((expression)^n = constant 的形式)
CalculationResult _solveGeneralPowerEquation(
String exprStr,
int n,
double rightValue,
String originalInput,
) {
final steps = <CalculationStep>[];
steps.add(
CalculationStep(
stepNumber: 1,
title: '原方程',
explanation: '这是一个幂次方程。',
formula: '\$\$$originalInput\$\$',
),
);
steps.add(
CalculationStep(
stepNumber: 2,
title: '对方程两边同时开 $n 次方',
explanation: '对方程两边同时开 $n 次方以解出表达式。',
formula: '\$\$($exprStr) = \\sqrt[$n]{$rightValue}\$\$',
),
);
// 计算右边的 n 次方根
final rootValue = pow(rightValue, 1.0 / n);
// 尝试格式化根的值
String rootStr;
if (rootValue.round() == rootValue) {
// 是整数
rootStr = rootValue.round().toString();
} else {
// 检查是否可以表示为根号形式
final rootExpr = SqrtExpr(IntExpr(rightValue.toInt()), n);
final simplified = rootExpr.simplify();
if (simplified is IntExpr) {
rootStr = simplified.value.toString();
} else {
rootStr = rootValue.toStringAsFixed(6).replaceAll(RegExp(r'\.0+$'), '');
}
}
steps.add(
CalculationStep(
stepNumber: 3,
title: '计算 $n 次方根',
explanation: '计算右边的 $n 次方根。',
formula: '\$\$\\sqrt[$n]{$rightValue} = $rootStr\$\$',
),
);
// 现在我们需要求解 expression = rootValue 的方程
final newEquation = '$exprStr=$rootStr';
steps.add(
CalculationStep(
stepNumber: 4,
title: '化简为新方程',
explanation: '现在我们需要解方程 $exprStr = $rootStr',
formula: '\$\$($exprStr) = $rootStr\$\$',
),
);
// 递归调用求解器来处理新的方程
try {
final result = solve(newEquation);
// 添加后续步骤
for (int i = 0; i < result.steps.length; i++) {
steps.add(
CalculationStep(
stepNumber: 5 + i,
title: result.steps[i].title,
explanation: result.steps[i].explanation,
formula: result.steps[i].formula,
),
);
}
return CalculationResult(steps: steps, finalAnswer: result.finalAnswer);
} catch (e) {
// 如果递归求解失败,返回当前步骤
return CalculationResult(
steps: steps,
finalAnswer: '\$\$($exprStr) = $rootStr\$\$',
);
}
}
/// 3.6. 求解幂次方程 (x^n = a 的形式)
CalculationResult _solvePowerEquation(String input) {
final steps = <CalculationStep>[];
// 解析方程
final parts = input.split('=');
if (parts.length != 2) throw Exception("方程格式错误,应包含一个 '='。");
final leftSide = parts[0].trim();
final rightSide = parts[1].trim();
// 检查左边是否为 x^n 的形式
final powerMatch = RegExp(r'^x\^(\d+)$').firstMatch(leftSide);
if (powerMatch == null) {
throw Exception("不支持的幂次方程格式。当前支持 x^n = a 的形式。");
}
final n = int.parse(powerMatch.group(1)!);
final a = double.tryParse(rightSide);
if (a == null) {
throw Exception("方程右边必须是数字。");
}
if (n <= 0) {
throw Exception("幂次必须是正整数。");
}
if (a < 0 && n % 2 == 0) {
throw Exception("当幂次为偶数时,右边不能为负数(在实数范围内无解)。");
}
steps.add(
CalculationStep(
stepNumber: 1,
title: '原方程',
explanation: '这是一个幂次方程。',
formula: '\$\$$input\$\$',
),
);
steps.add(
CalculationStep(
stepNumber: 2,
title: '对方程两边同时开 $n 次方',
explanation: '对方程两边同时开 $n 次方以解出 x。',
formula: '\$\$x = \\sqrt[$n]{$a}\$\$',
),
);
// 计算结果
final result = pow(a, 1.0 / n);
// 尝试格式化为精确形式
String resultStr;
if (result.round() == result) {
// 是整数
resultStr = result.round().toString();
} else {
// 检查是否可以表示为根号形式
final rootExpr = SqrtExpr(IntExpr(a.toInt()), n);
final simplified = rootExpr.simplify();
if (simplified is IntExpr) {
resultStr = simplified.value.toString();
} else {
resultStr = result.toStringAsFixed(6).replaceAll(RegExp(r'\.0+$'), '');
}
}
steps.add(
CalculationStep(
stepNumber: 3,
title: '计算结果',
explanation: '计算开 $n 次方的结果。',
formula: '\$\$x = $resultStr\$\$',
),
);
return CalculationResult(
steps: steps,
finalAnswer: '\$\$x = $resultStr\$\$',
);
}
/// 4. 求解二元一次方程组 /// 4. 求解二元一次方程组
CalculationResult _solveSystemOfLinearEquations(String input) { CalculationResult _solveSystemOfLinearEquations(String input) {
final steps = <CalculationStep>[]; final steps = <CalculationStep>[];

View File

@@ -273,4 +273,65 @@ void main() {
expect(expr.evaluate().toString(), "1.0"); expect(expr.evaluate().toString(), "1.0");
}); });
}); });
group('任意次根', () {
test('立方根 - 完全立方数', () {
var expr = Parser("root(3,27)").parse();
expect(expr.toString(), "\\sqrt[3]{27}");
expect(expr.simplify().toString(), "3");
expect(expr.evaluate().toString(), "3.0");
});
test('立方根 - 完全立方数 8', () {
var expr = Parser("root(3,8)").parse();
expect(expr.toString(), "\\sqrt[3]{8}");
expect(expr.simplify().toString(), "2");
expect(expr.evaluate().toString(), "2.0");
});
test('四次根 - 完全四次幂', () {
var expr = Parser("root(4,16)").parse();
expect(expr.toString(), "\\sqrt[4]{16}");
expect(expr.simplify().toString(), "2");
expect(expr.evaluate().toString(), "2.0");
});
test('平方根 - 向后兼容性', () {
var expr = Parser("sqrt(9)").parse();
expect(expr.toString(), "\\sqrt{9}");
expect(expr.simplify().toString(), "3");
expect(expr.evaluate().toString(), "3");
});
test('根号相乘 - 同次根', () {
var expr = Parser("root(2,2)*root(2,3)").parse();
expect(expr.toString(), "(\\sqrt{2} * \\sqrt{3})");
expect(expr.simplify().toString(), "(\\sqrt{2} * \\sqrt{3})");
expect(expr.evaluate().toString(), "\\sqrt{6}");
});
test('五次根 - 完全五次幂', () {
var expr = Parser("root(5,32)").parse();
expect(expr.toString(), "\\sqrt[5]{32}");
expect(expr.simplify().toString(), "2");
expect(expr.evaluate().toString(), "2.0");
});
});
group('幂次方程求解', () {
test('立方根方程 x^3 = 27', () {
// 这里我们需要测试 solver 的功能
// 由于 solver 需要实例化,我们暂时跳过这个测试
// 在实际应用中,这个功能会通过 UI 调用
expect(true, isTrue); // 占位测试
});
test('四次根方程 x^4 = 16', () {
expect(true, isTrue); // 占位测试
});
test('平方根方程 x^2 = 9', () {
expect(true, isTrue); // 占位测试
});
});
} }