import 'dart:math'; import 'package:flutter/foundation.dart'; // For kDebugMode import 'package:math_expressions/math_expressions.dart'; import 'models/calculation_step.dart'; /// 帮助解析一元一次方程 ax+b=cx+d 的辅助类 class LinearEquationParts { final double a, b, c, d; LinearEquationParts(this.a, this.b, this.c, this.d); } class SolverService { /// 主入口方法,识别并分发任务 CalculationResult solve(String input) { // 预处理输入字符串 final cleanInput = input.replaceAll(' ', '').toLowerCase(); // 对包含x的方程进行预处理,展开表达式 String processedInput = cleanInput; if (processedInput.contains('x') && processedInput.contains('(')) { processedInput = _expandExpressions(processedInput); } // 1. 检查是否为二元一次方程组 (格式: ...;...) if (processedInput.contains(';') && processedInput.contains('x') && processedInput.contains('y')) { return _solveSystemOfLinearEquations(processedInput); } // 2. 检查是否为一元二次方程 (包含 x^2 或 x²) if (processedInput.contains('x^2') || processedInput.contains('x²')) { return _solveQuadraticEquation(processedInput.replaceAll('x²', 'x^2')); } // 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2) if (processedInput.contains('x') && !processedInput.contains('y')) { return _solveLinearEquation(processedInput); } // 4. 如果都不是,则作为简单表达式计算 try { return _solveSimpleExpression(input); // 使用原始输入以保留运算符 } catch (e) { if (kDebugMode) { print(e); } throw Exception('无法识别的格式。请检查您的方程或表达式。'); } } /// ---- 求解器实现 ---- /// 1. 求解简单表达式 CalculationResult _solveSimpleExpression(String input) { final steps = []; steps.add( CalculationStep( stepNumber: 1, title: '表达式求值', explanation: '这是一个标准的数学表达式,我们将直接计算其结果。', formula: input, ), ); GrammarParser p = GrammarParser(); Expression exp = p.parse(input); final result = RealEvaluator().evaluate(exp); return CalculationResult(steps: steps, finalAnswer: result.toString()); } /// 2. 求解一元一次方程 CalculationResult _solveLinearEquation(String input) { final steps = []; steps.add( CalculationStep( stepNumber: 0, title: '原方程', explanation: '这是一元一次方程。', formula: '\$\$$input\$\$', ), ); final parts = _parseLinearEquation(input); final a = parts.a, b = parts.b, c = parts.c, d = parts.d; final newA = a - c; final newD = d - b; steps.add( CalculationStep( stepNumber: 1, title: '移项', explanation: '将所有含 x 的项移到等式左边,常数项移到右边。', formula: '\$\$${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}\$\$', ), ); steps.add( CalculationStep( stepNumber: 2, title: '合并同类项', explanation: '合并等式两边的项。', formula: '\$\$${newA}x = $newD\$\$', ), ); if (newA == 0) { return CalculationResult( steps: steps, finalAnswer: newD == 0 ? '有无穷多解' : '无解', ); } final x = newD / newA; steps.add( CalculationStep( stepNumber: 3, title: '求解 x', explanation: '两边同时除以 x 的系数 ($newA)。', formula: '\$\$x = \frac{$newD}{$newA}\$\$', ), ); return CalculationResult(steps: steps, finalAnswer: '\$\$x = $x\$\$'); } /// 3. 求解一元二次方程 (升级版) CalculationResult _solveQuadraticEquation(String input) { final steps = []; final eqParts = input.split('='); if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。"); final leftCoeffs = _parsePolynomial(eqParts[0]); final rightCoeffs = _parsePolynomial(eqParts[1]); final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0); final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0); final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0); if (a == 0) { return _solveLinearEquation('${b}x+$c=0'); } steps.add( CalculationStep( stepNumber: 1, title: '整理方程', explanation: r'将方程整理成标准形式 $ax^2+bx+c=0$。', formula: '\$\$${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0\$\$', ), ); if (a == a.round() && b == b.round() && c == c.round()) { final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt()); if (factors != null) { steps.add( CalculationStep( stepNumber: 2, title: '因式分解法 (十字相乘)', explanation: '我们发现可以将方程分解为两个一次因式的乘积。', formula: factors.formula, ), ); steps.add( CalculationStep( stepNumber: 3, title: '求解', explanation: '分别令每个因式等于 0,解出 x。', formula: factors.solution, ), ); return CalculationResult(steps: steps, finalAnswer: factors.solution); } } steps.add( CalculationStep( stepNumber: 2, title: '选择解法', explanation: '无法进行因式分解,我们选择使用求根公式法。', formula: '\$\$\\Delta = b^2 - 4ac\$\$', ), ); final delta = b * b - 4 * a * c; steps.add( CalculationStep( stepNumber: 3, title: '计算判别式 (Delta)', explanation: '\$\$\\Delta = b^2 - 4ac = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta\$\$', formula: '\$\$\\Delta = $delta\$\$', ), ); if (delta > 0) { final x1 = (-b + sqrt(delta)) / (2 * a); final x2 = (-b - sqrt(delta)) / (2 * a); steps.add( CalculationStep( stepNumber: 4, title: '应用求根公式', explanation: r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。', formula: '\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$', ); } else if (delta == 0) { final x = -b / (2 * a); steps.add( CalculationStep( stepNumber: 4, title: '应用求根公式', explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。', formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$', ); } else { steps.add( CalculationStep( stepNumber: 4, title: '判断解', explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解。', formula: '无实数解', ), ); return CalculationResult(steps: steps, finalAnswer: '无实数解'); } } /// 4. 求解二元一次方程组 CalculationResult _solveSystemOfLinearEquations(String input) { final steps = []; final equations = input.split(';'); if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。"); final p1 = _parseTwoVariableLinear(equations[0]); final p2 = _parseTwoVariableLinear(equations[1]); double a1 = p1[0], b1 = p1[1], c1 = p1[2]; double a2 = p2[0], b2 = p2[1], c2 = p2[2]; steps.add( CalculationStep( stepNumber: 0, title: '原始方程组', explanation: '这是一个二元一次方程组,我们将使用加减消元法求解。', formula: ''' \\begin{cases} ${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 & (1) \\ ${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 & (2) \\end{cases} ''', ), ); final det = a1 * b2 - a2 * b1; if (det == 0) { return CalculationResult( steps: steps, finalAnswer: a1 * c2 - a2 * c1 == 0 ? '有无穷多解' : '无解', ); } final newA1 = a1 * b2, newC1 = c1 * b2; final newA2 = a2 * b1, newC2 = c2 * b1; steps.add( CalculationStep( stepNumber: 1, title: '消元', explanation: '为了消去变量 y,将方程(1)两边乘以 $b2,方程(2)两边乘以 $b1。', formula: ''' \\begin{cases} ${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 & (3) \\ ${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 & (4) \\end{cases} ''', ), ); final xCoeff = newA1 - newA2; final constCoeff = newC1 - newC2; steps.add( CalculationStep( stepNumber: 2, title: '相减', explanation: '将方程(3)减去方程(4),得到一个只含 x 的方程。', formula: '\$\$($newA1 - $newA2)x = $newC1 - $newC2 \\Rightarrow ${xCoeff}x = $constCoeff\$\$', ), ); final x = constCoeff / xCoeff; steps.add( CalculationStep( stepNumber: 3, title: '解出 x', explanation: '求解上述方程得到 x 的值。', formula: '\$\$x = $x\$\$', ), ); if (b1.abs() < 1e-9) { final yCoeff = b2; final yConst = c2 - a2 * x; final y = yConst / yCoeff; steps.add( CalculationStep( stepNumber: 4, title: '回代求解 y', explanation: '将 x = $x 代入原方程(2)中。', formula: ''' \\begin{aligned} $a2($x) + ${b2}y &= $c2 \\ ${a2 * x} + ${b2}y &= $c2 \\ ${b2}y &= $c2 - ${a2 * x} \\ ${b2}y &= ${c2 - a2 * x} \\end{aligned} ''', ), ); steps.add( CalculationStep( stepNumber: 5, title: '解出 y', explanation: '求解得到 y 的值。', formula: '\$\$y = $y\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x = $x, \\quad y = $y\$\$', ); } else { final yCoeff = b1; final yConst = c1 - a1 * x; final y = yConst / yCoeff; steps.add( CalculationStep( stepNumber: 4, title: '回代求解 y', explanation: '将 x = $x 代入原方程(1)中。', formula: ''' \\begin{aligned} $a1($x) + ${b1}y &= $c1 \\ ${a1 * x} + ${b1}y &= $c1 \\ ${b1}y &= $c1 - ${a1 * x} \\ ${b1}y &= ${c1 - a1 * x} \\end{aligned} ''', ), ); steps.add( CalculationStep( stepNumber: 5, title: '解出 y', explanation: '求解得到 y 的值。', formula: '\$\$y = $y\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x = $x, \\quad y = $y\$\$', ); } } /// ---- 辅助函数 ---- String _expandExpressions(String input) { String result = input; while (true) { String oldResult = result; final powerMatch = RegExp( r'(-?\d*\.?\d*)?\(([^)]+)\)\^2', ).firstMatch(result); if (powerMatch != null) { final kStr = powerMatch.group(1); double k = 1.0; if (kStr != null && kStr.isNotEmpty) { k = kStr == '-' ? -1.0 : double.parse(kStr); } final factor = powerMatch.group(2)!; final coeffs = _parsePolynomial(factor); final a = coeffs[1] ?? 0; final b = coeffs[0] ?? 0; final newA = k * a * a; final newB = k * 2 * a * b; final newC = k * b * b; final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(powerMatch.group(0)!, '($expanded)'); continue; } final factorMulMatch = RegExp( r'\(([^)]+)\)\(([^)]+)\)', ).firstMatch(result); if (factorMulMatch != null) { final factor1 = factorMulMatch.group(1)!; final factor2 = factorMulMatch.group(2)!; final coeffs1 = _parsePolynomial(factor1); final coeffs2 = _parsePolynomial(factor2); final a = coeffs1[1] ?? 0; final b = coeffs1[0] ?? 0; final c = coeffs2[1] ?? 0; final d = coeffs2[0] ?? 0; final newA = a * c; final newB = a * d + b * c; final newC = b * d; final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(factorMulMatch.group(0)!, '($expanded)'); continue; } if (result == oldResult) break; } return result; } LinearEquationParts _parseLinearEquation(String input) { final parts = input.split('='); if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。"); final leftCoeffs = _parsePolynomial(parts[0]); final rightCoeffs = _parsePolynomial(parts[1]); return LinearEquationParts( (leftCoeffs[1] ?? 0.0), (leftCoeffs[0] ?? 0.0), (rightCoeffs[1] ?? 0.0), (rightCoeffs[0] ?? 0.0), ); } Map _parsePolynomial(String side) { final coeffs = {}; final pattern = RegExp( r'([+-]?(?:\d*\.?\d*)?)x(?:\^(\d+))?|([+-]?\d*\.?\d+)', ); var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side'; for (final match in pattern.allMatches(s)) { if (match.group(3) != null) { coeffs[0] = (coeffs[0] ?? 0) + double.parse(match.group(3)!); } else { int power = match.group(2) != null ? int.parse(match.group(2)!) : 1; String coeffStr = match.group(1) ?? '+'; double coeff = 1.0; if (coeffStr.isNotEmpty && coeffStr != '+') { coeff = coeffStr == '-' ? -1.0 : double.parse(coeffStr); } else if (coeffStr == '-') { coeff = -1.0; } coeffs[power] = (coeffs[power] ?? 0) + coeff; } } return coeffs; } List _parseTwoVariableLinear(String equation) { final parts = equation.split('='); if (parts.length != 2) throw Exception("方程 $equation 格式错误"); final c = double.tryParse(parts[1]) ?? 0.0; double a = 0, b = 0; final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]); if (xMatch != null) { final coeff = xMatch.group(1); if (coeff == null || coeff.isEmpty || coeff == '+') { a = 1.0; } else if (coeff == '-') { a = -1.0; } else { a = double.tryParse(coeff) ?? 0.0; } } final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]); if (yMatch != null) { final coeff = yMatch.group(1); if (coeff == null || coeff.isEmpty || coeff == '+') { b = 1.0; } else if (coeff == '-') { b = -1.0; } else { b = double.tryParse(coeff) ?? 0.0; } } return [a, b, c]; } ({String formula, String solution})? _tryFactorization(int a, int b, int c) { if (a == 0) return null; int ac = a * c; for (int i = 1; i <= sqrt(ac.abs()); i++) { if (ac % i == 0) { int j = ac ~/ i; if (check(i, j, b)) return formatFactor(i, j, a); if (check(-i, -j, b)) return formatFactor(-i, -j, a); if (check(i, -j, b)) return formatFactor(i, -j, a); if (check(-i, j, b)) return formatFactor(-i, j, a); } } return null; } bool check(int m, int n, int b) => m + n == b; ({String formula, String solution}) formatFactor(int m, int n, int a) { int common = gcd(n.abs(), a.abs()); int num = n ~/ common; int den = a ~/ common; final a1 = den; final c1 = num; final a2 = a ~/ den; final c2 = m ~/ a2; final f1Part1 = a1 == 1 ? 'x' : '${a1}x'; final f1 = c1 == 0 ? f1Part1 : '$f1Part1 ${c1 >= 0 ? '+' : ''} $c1'; final f2Part1 = a2 == 1 ? 'x' : '${a2}x'; final f2 = c2 == 0 ? f2Part1 : '$f2Part1 ${c2 >= 0 ? '+' : ''} $c2'; final int x1Num = -c1, x1Den = a1; final int x2Num = -c2, x2Den = a2; final sol1 = x1Den == 1 ? '$x1Num' : '\\frac{$x1Num}{$x1Den}'; final sol2 = x2Den == 1 ? '$x2Num' : '\\frac{$x2Num}{$x2Den}'; final solution = x1Num * x2Den == x2Num * x1Den ? 'x_1 = x_2 = $sol1' : 'x_1 = $sol1, \\quad x_2 = $sol2'; return (formula: '\$\$($f1)($f2) = 0\$\$', solution: '\$\$$solution\$\$'); } int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b); }