import 'dart:math'; import 'package:flutter/foundation.dart'; // For kDebugMode import 'package:math_expressions/math_expressions.dart'; import 'models/calculation_step.dart'; /// 帮助解析一元一次方程 ax+b=cx+d 的辅助类 class LinearEquationParts { final double a, b, c, d; LinearEquationParts(this.a, this.b, this.c, this.d); } class SolverService { /// 主入口方法,识别并分发任务 CalculationResult solve(String input) { // 预处理输入字符串 final cleanInput = input.replaceAll(' ', '').toLowerCase(); // 对包含x的方程进行预处理,展开表达式 String processedInput = cleanInput; if (processedInput.contains('x') && processedInput.contains('(')) { processedInput = _expandExpressions(processedInput); } // 1. 检查是否为二元一次方程组 (格式: ...;...) if (processedInput.contains(';') && processedInput.contains('x') && processedInput.contains('y')) { return _solveSystemOfLinearEquations(processedInput); } // 2. 检查是否为一元二次方程 (包含 x^2 或 x²) if (processedInput.contains('x^2') || processedInput.contains('x²')) { return _solveQuadraticEquation(processedInput.replaceAll('x²', 'x^2')); } // 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2) if (processedInput.contains('x') && !processedInput.contains('y')) { return _solveLinearEquation(processedInput); } // 4. 如果都不是,则作为简单表达式计算 try { return _solveSimpleExpression(input); // 使用原始输入以保留运算符 } catch (e) { if (kDebugMode) { print(e); } throw Exception('无法识别的格式。请检查您的方程或表达式。'); } } /// ---- 求解器实现 ---- /// 1. 求解简单表达式 CalculationResult _solveSimpleExpression(String input) { final steps = []; steps.add( CalculationStep( title: "第一步:表达式求值", explanation: "这是一个标准的数学表达式,我们将直接计算其结果。", formula: input, ), ); // **FIXED**: Correct usage of the math_expressions library Parser p = Parser(); Expression exp = p.parse(input); ContextModel cm = ContextModel(); final result = exp.evaluate(EvaluationType.REAL, cm); return CalculationResult(steps: steps, finalAnswer: result.toString()); } /// 2. 求解一元一次方程 CalculationResult _solveLinearEquation(String input) { final steps = []; steps.add( CalculationStep(title: "原方程", explanation: "这是一元一次方程。", formula: input), ); // 解析方程: ax+b=cx+d final parts = _parseLinearEquation(input); final a = parts.a, b = parts.b, c = parts.c, d = parts.d; // 移项合并 final newA = a - c; final newD = d - b; steps.add( CalculationStep( title: "第一步:移项", explanation: "将所有含 x 的项移到等式左边,常数项移到右边。", formula: "${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}", ), ); steps.add( CalculationStep( title: "第二步:合并同类项", explanation: "合并等式两边的项。", formula: "${newA}x = $newD", ), ); // 求解x if (newA == 0) { if (newD == 0) { return CalculationResult(steps: steps, finalAnswer: "有无穷多解"); } else { return CalculationResult(steps: steps, finalAnswer: "无解"); } } final x = newD / newA; steps.add( CalculationStep( title: "第三步:求解 x", explanation: "两边同时除以 x 的系数 ($newA)。", formula: "x = $newD / $newA", ), ); return CalculationResult(steps: steps, finalAnswer: "x = $x"); } /// 3. 求解一元二次方程 (升级版) CalculationResult _solveQuadraticEquation(String input) { final steps = []; // 整理成 ax^2+bx+c=0 的形式并提取系数 final eqParts = input.split('='); if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。"); final leftCoeffs = _parsePolynomial(eqParts[0]); final rightCoeffs = _parsePolynomial(eqParts[1]); // 移项合并 final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0); final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0); final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0); if (a == 0) { // 如果 a=0, 这实际上是一个一元一次方程 return _solveLinearEquation("${b}x+${c}=0"); } // **FIXED**: Corrected typo 'ax' to 'a' steps.add( CalculationStep( title: "第一步:整理方程", explanation: "将方程整理成标准形式 ax^2+bx+c=0。", formula: "${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0", ), ); // 尝试因式分解 (十字相乘法) if (a == a.round() && b == b.round() && c == c.round()) { final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt()); if (factors != null) { steps.add( CalculationStep( title: "第二步:因式分解法 (十字相乘)", explanation: "我们发现可以将方程分解为两个一次因式的乘积。", formula: factors.formula, ), ); steps.add( CalculationStep( title: "第三步:求解", explanation: "分别令每个因式等于 0,解出 x。", formula: "解得 ${factors.solution}", ), ); return CalculationResult(steps: steps, finalAnswer: factors.solution); } else { steps.add( CalculationStep( title: "第二步:选择解法", explanation: "尝试因式分解失败,我们选择使用求根公式法。", formula: "\$\\Delta = b^2 - 4ac\$", ), ); } } else { steps.add( CalculationStep( title: "第二步:选择解法", explanation: "系数包含小数,我们使用求根公式法。", formula: "\$\\Delta = b^2 - 4ac\$", ), ); } // 使用求根公式法 final delta = b * b - 4 * a * c; steps.add( CalculationStep( title: "第三步:计算判别式 (Delta)", explanation: "\$\\Delta = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta", // **FIXED**: Removed unnecessary braces for linter warning formula: "\$\\Delta = $delta", ), ); if (delta > 0) { final x1 = (-b + sqrt(delta)) / (2 * a); final x2 = (-b - sqrt(delta)) / (2 * a); steps.add( CalculationStep( title: "第四步:应用求根公式", explanation: "因为 \$\\Delta > 0\$,方程有两个不相等的实数根。公式: \$x = \\frac{-b \\pm \\sqrt{\\Delta}}{2a}\$", formula: "x₁ = ${x1.toStringAsFixed(4)}, x₂ = ${x2.toStringAsFixed(4)}", ), ); return CalculationResult( steps: steps, finalAnswer: "x₁ = ${x1.toStringAsFixed(4)}, x₂ = ${x2.toStringAsFixed(4)}", ); } else if (delta == 0) { final x = -b / (2 * a); steps.add( CalculationStep( title: "第四步:应用求根公式", explanation: "因为 \$\Delta = 0\$,方程有两个相等的实数根。", formula: "x₁ = x₂ = ${x.toStringAsFixed(4)}", ), ); return CalculationResult( steps: steps, finalAnswer: "x₁ = x₂ = ${x.toStringAsFixed(4)}", ); } else { steps.add( CalculationStep( title: "第四步:判断解", explanation: "因为 \$\Delta < 0\$,该方程在实数范围内无解。", formula: "无实数解", ), ); return CalculationResult(steps: steps, finalAnswer: "无实数解"); } } /// 4. 求解二元一次方程组 CalculationResult _solveSystemOfLinearEquations(String input) { final steps = []; final equations = input.split(';'); if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。"); final p1 = _parseTwoVariableLinear(equations[0]); final p2 = _parseTwoVariableLinear(equations[1]); double a1 = p1[0], b1 = p1[1], c1 = p1[2]; double a2 = p2[0], b2 = p2[1], c2 = p2[2]; steps.add( CalculationStep( title: "原始方程组", explanation: "这是一个二元一次方程组,我们将使用加减消元法求解。", formula: "${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 ---(1)\n${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 ---(2)", ), ); final det = a1 * b2 - a2 * b1; if (det == 0) { if (a1 * c2 - a2 * c1 == 0) { return CalculationResult(steps: steps, finalAnswer: "有无穷多解"); } else { return CalculationResult(steps: steps, finalAnswer: "无解"); } } final newA1 = a1 * b2, newC1 = c1 * b2; final newA2 = a2 * b1, newC2 = c2 * b1; // **FIXED**: Wrapped calculations in braces {} for string interpolation steps.add( CalculationStep( title: "第一步:消元", explanation: "为了消去变量 y,将方程(1)两边乘以 $b2\$,方程(2)两边乘以 $b1\$。", formula: "${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 ---(3)\n${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 ---(4)", ), ); final xCoeff = newA1 - newA2; final constCoeff = newC1 - newC2; steps.add( CalculationStep( title: "第二步:相减", explanation: "将方程(3)减去方程(4),得到一个只含 x 的方程。", formula: "($newA1 - $newA2)x = $newC1 - $newC2 \n=> ${xCoeff}x = $constCoeff", ), ); final x = constCoeff / xCoeff; steps.add( CalculationStep( title: "第三步:解出 x", explanation: "求解上述方程得到 x 的值。", formula: "x = $x", ), ); // **FIXED**: Added a check for b1 to avoid division by zero if we substitute into an equation without y. if (b1.abs() < 1e-9) { // If b1 is very close to 0, use the second equation final yCoeff = b2; final yConst = c2 - a2 * x; final y = yConst / yCoeff; steps.add( CalculationStep( title: "第四步:回代求解 y", explanation: "将 x = $x 代入原方程(2)中。", // **FIXED**: Corrected string interpolation for calculations and substitutions formula: "${a2}(${x}) + ${b2}y = $c2 \n=> ${a2 * x} + ${b2}y = $c2 \n=> ${b2}y = $c2 - ${a2 * x} \n=> ${b2}y = ${c2 - a2 * x}", ), ); steps.add( CalculationStep( title: "第五步:解出 y", explanation: "求解得到 y 的值。", formula: "y = $y", ), ); return CalculationResult(steps: steps, finalAnswer: "x = $x, y = $y"); } else { // Default case, substitute into the first equation final yCoeff = b1; final yConst = c1 - a1 * x; final y = yConst / yCoeff; steps.add( CalculationStep( title: "第四步:回代求解 y", explanation: "将 x = $x 代入原方程(1)中。", formula: "${a1}(${x}) + ${b1}y = $c1 \n=> ${a1 * x} + ${b1}y = $c1 \n=> ${b1}y = $c1 - ${a1 * x} \n=> ${b1}y = ${c1 - a1 * x}", ), ); steps.add( CalculationStep( title: "第五步:解出 y", explanation: "求解得到 y 的值。", formula: "y = $y", ), ); return CalculationResult(steps: steps, finalAnswer: "x = $x, y = $y"); } } /// ---- 辅助函数 ---- /// 展开表达式,例如 (x-1)(x+2) -> x^2+x-2 String _expandExpressions(String input) { String result = input; // 循环直到没有更多的表达式可以展开 while (true) { String oldResult = result; // 模式1: k*(ax+b)^2, 例如 4(x-1)^2 or (x-1)^2 final powerMatch = RegExp( r'(-?\d*\.?\d*)?\(([^)]+)\)\^2', ).firstMatch(result); if (powerMatch != null) { final kStr = powerMatch.group(1); double k = 1.0; if (kStr != null && kStr.isNotEmpty) { if (kStr == '-') { k = -1.0; } else { k = double.parse(kStr); } } final factor = powerMatch.group(2)!; final coeffs = _parsePolynomial(factor); final a = coeffs[1] ?? 0; final b = coeffs[0] ?? 0; // (ax+b)^2 = a^2*x^2 + 2ab*x + b^2 final newA = k * a * a; final newB = k * 2 * a * b; final newC = k * b * b; final expanded = "${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}${newC}"; result = result.replaceFirst(powerMatch.group(0)!, "($expanded)"); continue; // 重新开始循环以处理嵌套表达式 } // 模式2: (ax+b)(cx+d), 例如 (x-3)(x+2) final factorMulMatch = RegExp( r'\(([^)]+)\)\(([^)]+)\)', ).firstMatch(result); if (factorMulMatch != null) { final factor1 = factorMulMatch.group(1)!; final factor2 = factorMulMatch.group(2)!; final coeffs1 = _parsePolynomial(factor1); final coeffs2 = _parsePolynomial(factor2); final a = coeffs1[1] ?? 0; final b = coeffs1[0] ?? 0; final c = coeffs2[1] ?? 0; final d = coeffs2[0] ?? 0; // (ax+b)(cx+d) = ac*x^2 + (ad+bc)*x + bd final newA = a * c; final newB = a * d + b * c; final newC = b * d; final expanded = "${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}${newC}"; result = result.replaceFirst(factorMulMatch.group(0)!, "($expanded)"); continue; // 重新开始循环 } // 如果在这次迭代中没有改变,则跳出循环 if (result == oldResult) { break; } } return result; } LinearEquationParts _parseLinearEquation(String input) { final parts = input.split('='); if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。"); final leftCoeffs = _parsePolynomial(parts[0]); final rightCoeffs = _parsePolynomial(parts[1]); final a = leftCoeffs[1] ?? 0.0; final b = leftCoeffs[0] ?? 0.0; final c = rightCoeffs[1] ?? 0.0; final d = rightCoeffs[0] ?? 0.0; return LinearEquationParts(a, b, c, d); } Map _parsePolynomial(String side) { final coeffs = {}; final pattern = RegExp( r'([+-]?(?:\d*\.?\d*))?x(?:\^(\d+))?|([+-]?\d*\.?\d+)', ); var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side'; for (final match in pattern.allMatches(s)) { if (match.group(3) != null) { coeffs[0] = (coeffs[0] ?? 0) + double.parse(match.group(3)!); } else { int power = match.group(2) != null ? int.parse(match.group(2)!) : 1; String coeffStr = match.group(1) ?? '+'; double coeff = 1.0; if (coeffStr.isNotEmpty && coeffStr != '+') { if (coeffStr == '-') { coeff = -1.0; } else { coeff = double.parse(coeffStr); } } else if (coeffStr == '-') { coeff = -1.0; } coeffs[power] = (coeffs[power] ?? 0) + coeff; } } return coeffs; } List _parseTwoVariableLinear(String equation) { final parts = equation.split('='); if (parts.length != 2) throw Exception("方程 $equation 格式错误"); final c = double.tryParse(parts[1]) ?? 0.0; double a = 0, b = 0; final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]); if (xMatch != null) { final coeff = xMatch.group(1); if (coeff == null || coeff == '+') { a = 1.0; } else if (coeff == '-') { a = -1.0; } else { a = double.tryParse(coeff) ?? 0.0; } } final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]); if (yMatch != null) { final coeff = yMatch.group(1); if (coeff == null || coeff == '+') { b = 1.0; } else if (coeff == '-') { b = -1.0; } else { b = double.tryParse(coeff) ?? 0.0; } } return [a, b, c]; } ({String formula, String solution})? _tryFactorization(int a, int b, int c) { if (a == 0) return null; int ac = a * c; for (int i = 1; i <= sqrt(ac.abs()); i++) { if (ac % i == 0) { int j = ac ~/ i; if (check(i, j, b)) return formatFactor(i, j, a); if (check(-i, -j, b)) return formatFactor(-i, -j, a); if (check(i, -j, b)) return formatFactor(i, -j, a); if (check(-i, j, b)) return formatFactor(-i, j, a); } } return null; } // **FIXED**: Simplified check method bool check(int m, int n, int b) { return m + n == b; } ({String formula, String solution}) formatFactor(int m, int n, int a) { int common = gcd(n.abs(), a.abs()); int num = n ~/ common; int den = a ~/ common; final a1 = den; final c1 = num; final a2 = a ~/ den; final c2 = m ~/ a2; // **FIXED**: Correctly handle coefficients of 1 final f1Part1 = a1 == 1 ? 'x' : '${a1}x'; final f1 = c1 == 0 ? f1Part1 : "$f1Part1 ${c1 >= 0 ? '+' : ''} $c1"; final f2Part1 = a2 == 1 ? 'x' : '${a2}x'; final f2 = c2 == 0 ? f2Part1 : "$f2Part1 ${c2 >= 0 ? '+' : ''} $c2"; // **FIXED**: Renamed variables to lowerCamelCase final int x1Num = -c1, x1Den = a1; final int x2Num = -c2, x2Den = a2; final sol1 = x1Den == 1 ? "$x1Num" : "$x1Num/$x1Den"; final sol2 = x2Den == 1 ? "$x2Num" : "$x2Num/$x2Den"; final solution = x1Num * x2Den == x2Num * x1Den ? "x₁ = x₂ = $sol1" : "x₁ = $sol1, x₂ = $sol2"; return (formula: "(${f1})(${f2}) = 0", solution: solution); } int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b); }