import 'dart:math'; import 'package:flutter/foundation.dart'; // For kDebugMode import 'package:math_expressions/math_expressions.dart'; import 'models/calculation_step.dart'; /// 帮助解析一元一次方程 ax+b=cx+d 的辅助类 class LinearEquationParts { final double a, b, c, d; LinearEquationParts(this.a, this.b, this.c, this.d); } class SolverService { /// 主入口方法,识别并分发任务 CalculationResult solve(String input) { // 预处理输入字符串 final cleanInput = input.replaceAll(' ', '').toLowerCase(); // 对包含x的方程进行预处理,展开表达式 String processedInput = cleanInput; if (processedInput.contains('x') && processedInput.contains('(')) { processedInput = _expandExpressions(processedInput); } // 1. 检查是否为二元一次方程组 (格式: ...;...) if (processedInput.contains(';') && processedInput.contains('x') && processedInput.contains('y')) { return _solveSystemOfLinearEquations(processedInput); } // 2. 检查是否为一元二次方程 (包含 x^2 或 x²) if (processedInput.contains('x^2') || processedInput.contains('x²')) { return _solveQuadraticEquation(processedInput.replaceAll('x²', 'x^2')); } // 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2) if (processedInput.contains('x') && !processedInput.contains('y')) { return _solveLinearEquation(processedInput); } // 4. 如果都不是,则作为简单表达式计算 try { return _solveSimpleExpression(input); // 使用原始输入以保留运算符 } catch (e) { if (kDebugMode) { print(e); } throw Exception('无法识别的格式。请检查您的方程或表达式。'); } } /// ---- 求解器实现 ---- /// 1. 求解简单表达式 CalculationResult _solveSimpleExpression(String input) { final steps = []; steps.add( CalculationStep( stepNumber: 1, title: '表达式求值', explanation: '这是一个标准的数学表达式,我们将直接计算其结果。', formula: '\$\$$input\$\$', ), ); // 检查是否为特殊三角函数值,可以返回精确结果 final exactTrigResult = _getExactTrigResult(input); if (exactTrigResult != null) { return CalculationResult( steps: steps, finalAnswer: '\$\$$exactTrigResult\$\$', ); } // 预处理输入,将三角函数的参数从度转换为弧度 String processedInput = _convertTrigToRadians(input); GrammarParser p = GrammarParser(); Expression exp = p.parse(processedInput); final result = RealEvaluator().evaluate(exp).toDouble(); // 尝试将结果格式化为几倍根号的形式 final formattedResult = _formatSqrtResult(result); return CalculationResult( steps: steps, finalAnswer: '\$\$$formattedResult\$\$', ); } /// 2. 求解一元一次方程 CalculationResult _solveLinearEquation(String input) { final steps = []; steps.add( CalculationStep( stepNumber: 0, title: '原方程', explanation: '这是一元一次方程。', formula: '\$\$$input\$\$', ), ); final parts = _parseLinearEquation(input); final a = parts.a, b = parts.b, c = parts.c, d = parts.d; final newA = a - c; final newD = d - b; steps.add( CalculationStep( stepNumber: 1, title: '移项', explanation: '将所有含 x 的项移到等式左边,常数项移到右边。', formula: '\$\$${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}\$\$', ), ); steps.add( CalculationStep( stepNumber: 2, title: '合并同类项', explanation: '合并等式两边的项。', formula: '\$\$${newA}x = $newD\$\$', ), ); if (newA == 0) { return CalculationResult( steps: steps, finalAnswer: newD == 0 ? '有无穷多解' : '无解', ); } final x = newD / newA; steps.add( CalculationStep( stepNumber: 3, title: '求解 x', explanation: '两边同时除以 x 的系数 ($newA)。', formula: '\$\$x = \\frac{$newD}{$newA}\$\$', ), ); return CalculationResult(steps: steps, finalAnswer: '\$\$x = $x\$\$'); } /// 3. 求解一元二次方程 (升级版) CalculationResult _solveQuadraticEquation(String input) { final steps = []; final eqParts = input.split('='); if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。"); final leftCoeffs = _parsePolynomial(eqParts[0]); final rightCoeffs = _parsePolynomial(eqParts[1]); final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0); final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0); final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0); if (a == 0) { return _solveLinearEquation('${b}x+$c=0'); } steps.add( CalculationStep( stepNumber: 1, title: '整理方程', explanation: r'将方程整理成标准形式 $ax^2+bx+c=0$。', formula: '\$\$${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0\$\$', ), ); if (a == a.round() && b == b.round() && c == c.round()) { final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt()); if (factors != null) { steps.add( CalculationStep( stepNumber: 2, title: '因式分解法 (十字相乘)', explanation: '我们发现可以将方程分解为两个一次因式的乘积。', formula: factors.formula, ), ); steps.add( CalculationStep( stepNumber: 3, title: '求解', explanation: '分别令每个因式等于 0,解出 x。', formula: factors.solution, ), ); steps.add( CalculationStep( stepNumber: 4, title: '化简结果', explanation: '将分数化简到最简形式,并将负号写在分数外面。', formula: factors.solution, ), ); return CalculationResult(steps: steps, finalAnswer: factors.solution); } } steps.add( CalculationStep( stepNumber: 2, title: '选择解法', explanation: '无法进行因式分解,我们选择使用求根公式法。', formula: '\$\$\\Delta = b^2 - 4ac\$\$', ), ); final delta = b * b - 4 * a * c; steps.add( CalculationStep( stepNumber: 3, title: '计算判别式 (Delta)', explanation: '\$\$\\Delta = b^2 - 4ac = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta\$\$', formula: '\$\$\\Delta = $delta\$\$', ), ); if (delta > 0) { final x1 = (-b + sqrt(delta)) / (2 * a); final x2 = (-b - sqrt(delta)) / (2 * a); steps.add( CalculationStep( stepNumber: 4, title: '应用求根公式', explanation: r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。', formula: '\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$', ); } else if (delta == 0) { final x = -b / (2 * a); steps.add( CalculationStep( stepNumber: 4, title: '应用求根公式', explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。', formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$', ); } else { steps.add( CalculationStep( stepNumber: 4, title: '判断解', explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解,但有虚数解。', formula: '无实数解,有虚数解', ), ); final sqrtDelta = sqrt(-delta); final realPart = -b / (2 * a); final imagPart = sqrtDelta / (2 * a); steps.add( CalculationStep( stepNumber: 5, title: '计算虚数根', explanation: '使用求根公式计算虚数根。', formula: r'$$x = \frac{-b \pm \sqrt{-\Delta} i}{2a}$$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = ${realPart.toStringAsFixed(4)} + ${imagPart.toStringAsFixed(4)}i, \\quad x_2 = ${realPart.toStringAsFixed(4)} - ${imagPart.toStringAsFixed(4)}i\$\$', ); } } /// 4. 求解二元一次方程组 CalculationResult _solveSystemOfLinearEquations(String input) { final steps = []; final equations = input.split(';'); if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。"); final p1 = _parseTwoVariableLinear(equations[0]); final p2 = _parseTwoVariableLinear(equations[1]); double a1 = p1[0], b1 = p1[1], c1 = p1[2]; double a2 = p2[0], b2 = p2[1], c2 = p2[2]; steps.add( CalculationStep( stepNumber: 0, title: '原始方程组', explanation: '这是一个二元一次方程组,我们将使用加减消元法求解。', formula: ''' \$\$ \\begin{cases} ${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 & (1) \\\\ ${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 & (2) \\end{cases} \$\$ ''', ), ); final det = a1 * b2 - a2 * b1; if (det == 0) { return CalculationResult( steps: steps, finalAnswer: a1 * c2 - a2 * c1 == 0 ? '有无穷多解' : '无解', ); } final newA1 = a1 * b2, newC1 = c1 * b2; final newA2 = a2 * b1, newC2 = c2 * b1; steps.add( CalculationStep( stepNumber: 1, title: '消元', explanation: '为了消去变量 y,将方程(1)两边乘以 $b2,方程(2)两边乘以 $b1。', formula: ''' \$\$ \\begin{cases} ${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 & (3) \\\\ ${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 & (4) \\end{cases} \$\$ ''', ), ); final xCoeff = newA1 - newA2; final constCoeff = newC1 - newC2; steps.add( CalculationStep( stepNumber: 2, title: '相减', explanation: '将方程(3)减去方程(4),得到一个只含 x 的方程。', formula: '\$\$($newA1 - $newA2)x = $newC1 - $newC2 \\Rightarrow ${xCoeff}x = $constCoeff\$\$', ), ); final x = constCoeff / xCoeff; steps.add( CalculationStep( stepNumber: 3, title: '解出 x', explanation: '求解上述方程得到 x 的值。', formula: '\$\$x = $x\$\$', ), ); if (b1.abs() < 1e-9) { final yCoeff = b2; final yConst = c2 - a2 * x; final y = yConst / yCoeff; steps.add( CalculationStep( stepNumber: 4, title: '回代求解 y', explanation: '将 x = $x 代入原方程(2)中。', formula: ''' \$\$ \\begin{aligned} $a2($x) + ${b2}y &= $c2 \\\\ ${a2 * x} + ${b2}y &= $c2 \\\\ ${b2}y &= $c2 - ${a2 * x} \\\\ ${b2}y &= ${c2 - a2 * x} \\end{aligned} \$\$ ''', ), ); steps.add( CalculationStep( stepNumber: 5, title: '解出 y', explanation: '求解得到 y 的值。', formula: '\$\$y = $y\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x = $x, \\quad y = $y\$\$', ); } else { final yCoeff = b1; final yConst = c1 - a1 * x; final y = yConst / yCoeff; steps.add( CalculationStep( stepNumber: 4, title: '回代求解 y', explanation: '将 x = $x 代入原方程(1)中。', formula: ''' \$\$ \\begin{aligned} $a1($x) + ${b1}y &= $c1 \\\\ ${a1 * x} + ${b1}y &= $c1 \\\\ ${b1}y &= $c1 - ${a1 * x} \\\\ ${b1}y &= ${c1 - a1 * x} \\end{aligned} \$\$ ''', ), ); steps.add( CalculationStep( stepNumber: 5, title: '解出 y', explanation: '求解得到 y 的值。', formula: '\$\$y = $y\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x = $x, \\quad y = $y\$\$', ); } } /// ---- 辅助函数 ---- /// 获取精确三角函数结果 String? _getExactTrigResult(String input) { final cleanInput = input.replaceAll(' ', '').toLowerCase(); // 匹配 sin(角度) 模式 final sinMatch = RegExp(r'^sin\((\d+(?:\+\d+)*)\)$').firstMatch(cleanInput); if (sinMatch != null) { final angleExpr = sinMatch.group(1)!; final angle = _evaluateAngleExpression(angleExpr); if (angle != null) { return _getSinExactValue(angle); } } // 匹配 cos(角度) 模式 final cosMatch = RegExp(r'^cos\((\d+(?:\+\d+)*)\)$').firstMatch(cleanInput); if (cosMatch != null) { final angleExpr = cosMatch.group(1)!; final angle = _evaluateAngleExpression(angleExpr); if (angle != null) { return _getCosExactValue(angle); } } // 匹配 tan(角度) 模式 final tanMatch = RegExp(r'^tan\((\d+(?:\+\d+)*)\)$').firstMatch(cleanInput); if (tanMatch != null) { final angleExpr = tanMatch.group(1)!; final angle = _evaluateAngleExpression(angleExpr); if (angle != null) { return _getTanExactValue(angle); } } return null; } /// 计算角度表达式(如 30+45 = 75) int? _evaluateAngleExpression(String expr) { final parts = expr.split('+'); int sum = 0; for (final part in parts) { final num = int.tryParse(part.trim()); if (num == null) return null; sum += num; } return sum; } /// 获取 sin 的精确值 String? _getSinExactValue(int angle) { // 标准化角度到 0-360 度 final normalizedAngle = angle % 360; switch (normalizedAngle) { case 0: case 360: return '0'; case 30: return '\\frac{1}{2}'; case 45: return '\\frac{\\sqrt{2}}{2}'; case 60: return '\\frac{\\sqrt{3}}{2}'; case 75: return '1 + \\frac{\\sqrt{2}}{2}'; case 90: return '1'; case 120: return '\\frac{\\sqrt{3}}{2}'; case 135: return '\\frac{\\sqrt{2}}{2}'; case 150: return '\\frac{1}{2}'; case 180: return '0'; case 210: return '-\\frac{1}{2}'; case 225: return '-\\frac{\\sqrt{2}}{2}'; case 240: return '-\\frac{\\sqrt{3}}{2}'; case 270: return '-1'; case 300: return '-\\frac{\\sqrt{3}}{2}'; case 315: return '-\\frac{\\sqrt{2}}{2}'; case 330: return '-\\frac{1}{2}'; default: return null; } } /// 获取 cos 的精确值 String? _getCosExactValue(int angle) { // cos(angle) = sin(90 - angle) final complementaryAngle = 90 - angle; return _getSinExactValue(complementaryAngle.abs()); } /// 获取 tan 的精确值 String? _getTanExactValue(int angle) { // tan(angle) = sin(angle) / cos(angle) final sinValue = _getSinExactValue(angle); final cosValue = _getCosExactValue(angle); if (sinValue != null && cosValue != null) { if (cosValue == '0') return null; // 未定义 return '\\frac{$sinValue}{$cosValue}'; } return null; } /// 将三角函数的参数从度转换为弧度 String _convertTrigToRadians(String input) { String result = input; // 正则表达式匹配三角函数调用,如 sin(30), cos(45), tan(60) final trigPattern = RegExp( r'(sin|cos|tan|asin|acos|atan)\s*\(\s*([^)]+)\s*\)', caseSensitive: false, ); result = result.replaceAllMapped(trigPattern, (match) { final func = match.group(1)!; final arg = match.group(2)!; // 如果参数已经是弧度相关的表达式(包含 pi 或 π),则不转换 if (arg.contains('pi') || arg.contains('π') || arg.contains('rad')) { return '$func($arg)'; } // 将度数转换为弧度:度 * π / 180 return '$func(($arg)*($pi/180))'; }); return result; } /// 将数值结果格式化为几倍根号的形式 String _formatSqrtResult(double result) { // 处理负数 if (result < 0) { return '-${_formatSqrtResult(-result)}'; } // 处理零 if (result == 0) return '0'; // 检查是否接近整数 final rounded = result.round(); if ((result - rounded).abs() < 1e-10) { return rounded.toString(); } // 计算 result 的平方,看它是否接近整数 final squared = result * result; final squaredRounded = squared.round(); // 如果 squared 接近整数,说明 result 是某个数的平方根 if ((squared - squaredRounded).abs() < 1e-6) { // 寻找最大的完全平方数因子 int maxSquareFactor = 1; for (int i = 2; i * i <= squaredRounded; i++) { if (squaredRounded % (i * i) == 0) { maxSquareFactor = i * i; } } final coefficient = sqrt(maxSquareFactor).round(); final remaining = squaredRounded ~/ maxSquareFactor; if (remaining == 1) { // 完全平方数,直接返回系数 return coefficient.toString(); } else if (coefficient == 1) { return '\\sqrt{$remaining}'; } else { return '$coefficient\\sqrt{$remaining}'; } } // 如果不是平方根的结果,返回原始数值(保留几位小数) return result .toStringAsFixed(6) .replaceAll(RegExp(r'\.0+$'), '') .replaceAll(RegExp(r'\.$'), ''); } String _expandExpressions(String input) { String result = input; int maxIterations = 10; // Prevent infinite loops int iterationCount = 0; while (iterationCount < maxIterations) { String oldResult = result; final powerMatch = RegExp( r'(-?\d*\.?\d*)?\(([^)]+)\)\^2', ).firstMatch(result); if (powerMatch != null) { final kStr = powerMatch.group(1); double k = 1.0; if (kStr != null && kStr.isNotEmpty) { k = kStr == '-' ? -1.0 : double.parse(kStr); } final factor = powerMatch.group(2)!; final coeffs = _parsePolynomial(factor); final a = coeffs[1] ?? 0; final b = coeffs[0] ?? 0; final newA = k * a * a; final newB = k * 2 * a * b; final newC = k * b * b; final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(powerMatch.group(0)!, '($expanded)'); iterationCount++; continue; } final factorMulMatch = RegExp( r'\(([^)]+)\)\(([^)]+)\)', ).firstMatch(result); if (factorMulMatch != null) { final factor1 = factorMulMatch.group(1)!; final factor2 = factorMulMatch.group(2)!; final coeffs1 = _parsePolynomial(factor1); final coeffs2 = _parsePolynomial(factor2); final a = coeffs1[1] ?? 0; final b = coeffs1[0] ?? 0; final c = coeffs2[1] ?? 0; final d = coeffs2[0] ?? 0; final newA = a * c; final newB = a * d + b * c; final newC = b * d; final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(factorMulMatch.group(0)!, '($expanded)'); iterationCount++; continue; } // Handle expressions like x(expr) or (expr)x or coeff(expr) final termFactorMatch = RegExp( r'([+-]?(?:\d*\.?\d*)?x?)\(([^)]+)\)', ).firstMatch(result); if (termFactorMatch != null) { final termStr = termFactorMatch.group(1)!; final factorStr = termFactorMatch.group(2)!; // Skip if the term is just a sign or empty if (termStr == '+' || termStr == '-' || termStr.isEmpty) { break; } // Parse the term (coefficient and x power) final termCoeffs = _parsePolynomial(termStr); final factorCoeffs = _parsePolynomial(factorStr); final termA = termCoeffs[1] ?? 0; // x coefficient final termB = termCoeffs[0] ?? 0; // constant term final factorA = factorCoeffs[1] ?? 0; // x coefficient final factorB = factorCoeffs[0] ?? 0; // constant term // Multiply: (termA*x + termB) * (factorA*x + factorB) final newA = termA * factorA; final newB = termA * factorB + termB * factorA; final newC = termB * factorB; final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(termFactorMatch.group(0)!, '($expanded)'); iterationCount++; continue; } if (result == oldResult) break; iterationCount++; } if (iterationCount >= maxIterations) { throw Exception('表达式展开过于复杂,请简化输入。'); } return result; } LinearEquationParts _parseLinearEquation(String input) { final parts = input.split('='); if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。"); final leftCoeffs = _parsePolynomial(parts[0]); final rightCoeffs = _parsePolynomial(parts[1]); return LinearEquationParts( (leftCoeffs[1] ?? 0.0), (leftCoeffs[0] ?? 0.0), (rightCoeffs[1] ?? 0.0), (rightCoeffs[0] ?? 0.0), ); } Map _parsePolynomial(String side) { final coeffs = {}; // 扩展模式以支持 sqrt 函数 final pattern = RegExp( r'([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))x(?:\^(\d+))?|([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))', ); var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side'; for (final match in pattern.allMatches(s)) { if (match.group(3) != null) { // 常数项 final constStr = match.group(3)!; final constValue = _parseCoefficientWithSqrt(constStr); coeffs[0] = (coeffs[0] ?? 0) + constValue; } else { // x 的幂次项 int power = match.group(2) != null ? int.parse(match.group(2)!) : 1; String coeffStr = match.group(1) ?? '+'; final coeff = _parseCoefficientWithSqrt(coeffStr); coeffs[power] = (coeffs[power] ?? 0) + coeff; } } return coeffs; } /// 解析包含 sqrt 函数的系数 double _parseCoefficientWithSqrt(String coeffStr) { if (coeffStr.isEmpty || coeffStr == '+') return 1.0; if (coeffStr == '-') return -1.0; // 检查是否包含 sqrt 函数 final sqrtMatch = RegExp(r'sqrt\((\d+)\)').firstMatch(coeffStr); if (sqrtMatch != null) { final innerValue = int.parse(sqrtMatch.group(1)!); // 对于完全平方数,直接返回整数结果 final sqrtValue = sqrt(innerValue.toDouble()); final rounded = sqrtValue.round(); if ((sqrtValue - rounded).abs() < 1e-10) { // 检查是否有系数 final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, ''); if (coeffPart.isEmpty) return rounded.toDouble(); if (coeffPart == '-') return -rounded.toDouble(); final coeff = double.parse(coeffPart); return coeff * rounded; } // 对于非完全平方数,计算数值但保持高精度 final nonPerfectSqrtValue = sqrt(innerValue.toDouble()); // 检查是否有系数 final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, ''); if (coeffPart.isEmpty) return nonPerfectSqrtValue; if (coeffPart == '-') return -nonPerfectSqrtValue; final coeff = double.parse(coeffPart); return coeff * nonPerfectSqrtValue; } // 普通数值 return double.parse(coeffStr); } List _parseTwoVariableLinear(String equation) { final parts = equation.split('='); if (parts.length != 2) throw Exception("方程 $equation 格式错误"); final c = double.tryParse(parts[1]) ?? 0.0; double a = 0, b = 0; final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]); if (xMatch != null) { final coeff = xMatch.group(1); if (coeff == null || coeff.isEmpty || coeff == '+') { a = 1.0; } else if (coeff == '-') { a = -1.0; } else { a = double.tryParse(coeff) ?? 0.0; } } final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]); if (yMatch != null) { final coeff = yMatch.group(1); if (coeff == null || coeff.isEmpty || coeff == '+') { b = 1.0; } else if (coeff == '-') { b = -1.0; } else { b = double.tryParse(coeff) ?? 0.0; } } return [a, b, c]; } ({String formula, String solution})? _tryFactorization(int a, int b, int c) { if (a == 0) return null; int ac = a * c; int absAc = ac.abs(); for (int d = 1; d <= sqrt(absAc).toInt(); d++) { if (absAc % d == 0) { int d1 = d; int d2 = absAc ~/ d; List signs1 = ac >= 0 ? [1, -1] : [1, -1]; List signs2 = ac >= 0 ? [1, -1] : [1, -1]; for (int s1 in signs1) { for (int s2 in signs2) { int m = s1 * d1; int n = s2 * d2; if (check(m, n, b)) return formatFactor(m, n, a); m = s1 * d1; n = s2 * (-d2); if (check(m, n, b)) return formatFactor(m, n, a); m = s1 * (-d1); n = s2 * d2; if (check(m, n, b)) return formatFactor(m, n, a); m = s1 * (-d1); n = s2 * (-d2); if (check(m, n, b)) return formatFactor(m, n, a); } } } } return null; } bool check(int m, int n, int b) => m + n == b; ({String formula, String solution}) formatFactor(int m, int n, int a) { // Roots are -m/a and -n/a int g1 = gcd(m.abs(), a.abs()); int root1Num = -m ~/ g1; int root1Den = a ~/ g1; int g2 = gcd(n.abs(), a.abs()); int root2Num = -n ~/ g2; int root2Den = a ~/ g2; String sol1 = _formatFraction(root1Num, root1Den); String sol2 = _formatFraction(root2Num, root2Den); // For formula, show (a x + m)(x + n/a) or simplified String f1 = a == 1 ? 'x' : '${a}x'; f1 = m == 0 ? f1 : '$f1 ${m >= 0 ? '+' : ''} $m'; String f2; if (n % a == 0) { int coeff = n ~/ a; f2 = 'x ${coeff >= 0 ? '+' : ''} $coeff'; if (coeff == 0) f2 = 'x'; } else { f2 = 'x ${n >= 0 ? '+' : ''} \\frac{$n}{$a}'; } String formula = '\$\$($f1)($f2) = 0\$\$'; String solution; if (root1Num * root2Den == root2Num * root1Den) { solution = '\$\$x_1 = x_2 = $sol1\$\$'; } else { solution = '\$\$x_1 = $sol1, \\quad x_2 = $sol2\$\$'; } return (formula: formula, solution: solution); } String _formatFraction(int num, int den) { if (den == 0) return 'undefined'; // Handle sign: make numerator positive, put sign outside bool isNegative = (num < 0) != (den < 0); int absNum = num.abs(); int absDen = den.abs(); // Simplify fraction int g = gcd(absNum, absDen); absNum ~/= g; absDen ~/= g; if (absDen == 1) { return isNegative ? '-$absNum' : '$absNum'; } else { String fraction = '\\frac{$absNum}{$absDen}'; return isNegative ? '-$fraction' : fraction; } } int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b); }