import 'dart:math'; import 'package:rational/rational.dart'; import 'models/calculation_step.dart'; import 'calculator.dart'; import 'parser.dart'; /// 帮助解析一元一次方程 ax+b=cx+d 的辅助类 class LinearEquationParts { final double a, b, c, d; LinearEquationParts(this.a, this.b, this.c, this.d); } class SolverService { /// 主入口方法,识别并分发任务 CalculationResult solve(String input) { // 预处理输入字符串 final cleanInput = input.replaceAll(' ', '').toLowerCase(); // 对包含x的方程进行预处理,展开表达式 String processedInput = cleanInput; if (processedInput.contains('x') && processedInput.contains('(')) { processedInput = _expandExpressions(processedInput); } // 1. 检查是否为二元一次方程组 (格式: ...;...) if (processedInput.contains(';') && processedInput.contains('x') && processedInput.contains('y')) { return _solveSystemOfLinearEquations(processedInput); } // 2. 检查是否为一元二次方程 (包含 x^2 或 x²) if (processedInput.contains('x^2') || processedInput.contains('x²')) { return _solveQuadraticEquation(processedInput.replaceAll('x²', 'x^2')); } // 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2) if (processedInput.contains('x') && !processedInput.contains('y')) { return _solveLinearEquation(processedInput); } // 4. 如果都不是,则作为简单表达式计算 try { return _solveSimpleExpression(input); // 使用原始输入以保留运算符 } catch (e) { throw Exception('无法识别的格式。请检查您的方程或表达式。'); } } /// ---- 求解器实现 ---- /// 1. 求解简单表达式 CalculationResult _solveSimpleExpression(String input) { final steps = []; // Parse the input to get LaTeX-formatted version final parser = Parser(input); final parsedExpr = parser.parse(); final latexInput = parsedExpr.toString().replaceAll('*', '\\cdot'); steps.add( CalculationStep( stepNumber: 1, title: '表达式求值', explanation: '这是一个标准的数学表达式,我们将直接计算其结果。', formula: '\$\$$latexInput\$\$', ), ); // 检查是否为特殊三角函数值,可以返回精确结果 final exactTrigResult = getExactTrigResult(input); if (exactTrigResult != null) { return CalculationResult( steps: steps, finalAnswer: '\$\$$exactTrigResult\$\$', ); } // 预处理输入,将三角函数的参数从度转换为弧度 String processedInput = convertTrigToRadians(input); try { // 使用自定义解析器解析表达式 final parser = Parser(processedInput); final expr = parser.parse(); // 对表达式进行求值 final evaluatedExpr = expr.evaluate(); // 获取数值结果 - 需要正确进行类型转换 double result; if (evaluatedExpr is IntExpr) { result = evaluatedExpr.value.toDouble(); } else if (evaluatedExpr is DoubleExpr) { result = evaluatedExpr.value; } else if (evaluatedExpr is FractionExpr) { result = evaluatedExpr.numerator / evaluatedExpr.denominator; } else { // 如果无法完全求值为数值,尝试简化并转换为字符串 final simplified = evaluatedExpr.simplify(); return CalculationResult( steps: steps, finalAnswer: '\$\$${simplified.toString()}\$\$', ); } // 尝试将结果格式化为几倍根号的形式 final formattedResult = formatSqrtResult(result); return CalculationResult( steps: steps, finalAnswer: '\$\$$formattedResult\$\$', ); } catch (e) { throw Exception('无法解析表达式: $input'); } } /// 2. 求解一元一次方程 CalculationResult _solveLinearEquation(String input) { final steps = []; // Parse the input to get LaTeX-formatted version final parser = Parser(input); final parsedExpr = parser.parse(); final latexInput = parsedExpr.toString().replaceAll('*', '\\cdot'); steps.add( CalculationStep( stepNumber: 0, title: '原方程', explanation: '这是一元一次方程。', formula: '\$\$$latexInput\$\$', ), ); final parts = _parseLinearEquation(input); final a = parts.a, b = parts.b, c = parts.c, d = parts.d; final newA = _rationalFromDouble(a) - _rationalFromDouble(c); final newD = _rationalFromDouble(d) - _rationalFromDouble(b); steps.add( CalculationStep( stepNumber: 1, title: '移项', explanation: '将所有含 x 的项移到等式左边,常数项移到右边。', formula: '\$\$${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}\$\$', ), ); steps.add( CalculationStep( stepNumber: 2, title: '合并同类项', explanation: '合并等式两边的项。', formula: '\$\$${newA.toDouble().toStringAsFixed(4)}x = ${newD.toDouble().toStringAsFixed(4)}\$\$', ), ); if (newA == Rational.zero) { return CalculationResult( steps: steps, finalAnswer: newD == Rational.zero ? '有无穷多解' : '无解', ); } final x = newD / newA; steps.add( CalculationStep( stepNumber: 3, title: '求解 x', explanation: '两边同时除以 x 的系数 ($newA)。', formula: '\$\$x = \\frac{$newD}{$newA}\$\$', ), ); return CalculationResult(steps: steps, finalAnswer: '\$\$x = $x\$\$'); } /// 3. 求解一元二次方程 (升级版) CalculationResult _solveQuadraticEquation(String input) { final steps = []; final eqParts = input.split('='); if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。"); // Keep original equation for display final originalEquation = _formatOriginalEquation(input); // Parse coefficients symbolically final leftCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[0]); final rightCoeffsSymbolic = _parsePolynomialSymbolic(eqParts[1]); final aSymbolic = _subtractCoefficients( leftCoeffsSymbolic[2] ?? '0', rightCoeffsSymbolic[2] ?? '0', ); final bSymbolic = _subtractCoefficients( leftCoeffsSymbolic[1] ?? '0', rightCoeffsSymbolic[1] ?? '0', ); final cSymbolic = _subtractCoefficients( leftCoeffsSymbolic[0] ?? '0', rightCoeffsSymbolic[0] ?? '0', ); // Also get numeric values for calculations final leftCoeffs = _parsePolynomial(eqParts[0]); final rightCoeffs = _parsePolynomial(eqParts[1]); final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0); final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0); final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0); if (a == 0) { return _solveLinearEquation('${b}x+$c=0'); } steps.add( CalculationStep( stepNumber: 1, title: '整理方程', explanation: r'将方程整理成标准形式 $ax^2+bx+c=0$。', formula: originalEquation, ), ); if (a == a.round() && b == b.round() && c == c.round()) { final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt()); if (factors != null) { steps.add( CalculationStep( stepNumber: 2, title: '因式分解法 (十字相乘)', explanation: '我们发现可以将方程分解为两个一次因式的乘积。', formula: factors.formula, ), ); steps.add( CalculationStep( stepNumber: 3, title: '求解', explanation: '分别令每个因式等于 0,解出 x。', formula: factors.solution, ), ); steps.add( CalculationStep( stepNumber: 4, title: '化简结果', explanation: '将分数化简到最简形式,并将负号写在分数外面。', formula: factors.solution, ), ); return CalculationResult(steps: steps, finalAnswer: factors.solution); } } steps.add( CalculationStep( stepNumber: 2, title: '选择解法', explanation: '无法进行因式分解,我们选择使用求根公式法。', formula: '\$\$\\Delta = b^2 - 4ac\$\$', ), ); // Calculate delta symbolically final deltaSymbolic = _calculateDeltaSymbolic( aSymbolic, bSymbolic, cSymbolic, ); final delta = _rationalFromDouble(b).pow(2) - Rational.fromInt(4) * _rationalFromDouble(a) * _rationalFromDouble(c); steps.add( CalculationStep( stepNumber: 3, title: '计算判别式 (Delta)', explanation: '\$\$\\Delta = b^2 - 4ac = $deltaSymbolic\$\$', formula: '\$\$\\Delta = $deltaSymbolic = ${delta.toDouble().toStringAsFixed(4)}\$\$', ), ); final deltaDouble = delta.toDouble(); if (deltaDouble > 0) { // Pass delta directly to maintain precision final x1Expr = _formatQuadraticRoot(-b, delta, 2 * a, true); final x2Expr = _formatQuadraticRoot(-b, delta, 2 * a, false); steps.add( CalculationStep( stepNumber: 4, title: '应用求根公式', explanation: r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。', formula: '\$\$x_1 = $x1Expr, \\quad x_2 = $x2Expr\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = $x1Expr, \\quad x_2 = $x2Expr\$\$', ); } else if (deltaDouble == 0) { final x = -b / (2 * a); steps.add( CalculationStep( stepNumber: 4, title: '应用求根公式', explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。', formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$', ); } else { steps.add( CalculationStep( stepNumber: 4, title: '判断解', explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解,但有虚数解。', formula: '无实数解,有虚数解', ), ); // For complex roots, we need to handle -delta final negDelta = -delta; final sqrtNegDeltaStr = _formatSqrtFromRational(negDelta); final realPart = -b / (2 * a); final imagPartExpr = _formatImaginaryPart(sqrtNegDeltaStr, 2 * a); steps.add( CalculationStep( stepNumber: 5, title: '计算虚数根', explanation: '使用求根公式计算虚数根。', formula: r'$$x = \frac{-b \pm \sqrt{-\Delta} i}{2a}$$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x_1 = ${realPart.toStringAsFixed(4)} + $imagPartExpr, \\quad x_2 = ${realPart.toStringAsFixed(4)} - $imagPartExpr\$\$', ); } } /// 4. 求解二元一次方程组 CalculationResult _solveSystemOfLinearEquations(String input) { final steps = []; final equations = input.split(';'); if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。"); final p1 = _parseTwoVariableLinear(equations[0]); final p2 = _parseTwoVariableLinear(equations[1]); double a1 = p1[0], b1 = p1[1], c1 = p1[2]; double a2 = p2[0], b2 = p2[1], c2 = p2[2]; steps.add( CalculationStep( stepNumber: 0, title: '原始方程组', explanation: '这是一个二元一次方程组,我们将使用加减消元法求解。', formula: ''' \$\$ \\begin{cases} ${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 & (1) \\\\ ${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 & (2) \\end{cases} \$\$ ''', ), ); final det = _rationalFromDouble(a1) * _rationalFromDouble(b2) - _rationalFromDouble(a2) * _rationalFromDouble(b1); if (det == Rational.zero) { final infiniteCheck = _rationalFromDouble(a1) * _rationalFromDouble(c2) - _rationalFromDouble(a2) * _rationalFromDouble(c1); return CalculationResult( steps: steps, finalAnswer: infiniteCheck == Rational.zero ? '有无穷多解' : '无解', ); } final newA1 = _rationalFromDouble(a1) * _rationalFromDouble(b2); final newC1 = _rationalFromDouble(c1) * _rationalFromDouble(b2); final newA2 = _rationalFromDouble(a2) * _rationalFromDouble(b1); final newC2 = _rationalFromDouble(c2) * _rationalFromDouble(b1); steps.add( CalculationStep( stepNumber: 1, title: '消元', explanation: '为了消去变量 y,将方程(1)两边乘以 $b2,方程(2)两边乘以 $b1。', formula: ''' \$\$ \\begin{cases} ${newA1.toDouble().toStringAsFixed(2)}x ${b1 * b2 >= 0 ? '+' : ''} ${(b1 * b2).toStringAsFixed(2)}y = ${newC1.toDouble().toStringAsFixed(2)} & (3) \\\\ ${newA2.toDouble().toStringAsFixed(2)}x ${b1 * b2 >= 0 ? '+' : ''} ${(b1 * b2).toStringAsFixed(2)}y = ${newC2.toDouble().toStringAsFixed(2)} & (4) \\end{cases} \$\$ ''', ), ); final xCoeff = newA1 - newA2; final constCoeff = newC1 - newC2; steps.add( CalculationStep( stepNumber: 2, title: '相减', explanation: '将方程(3)减去方程(4),得到一个只含 x 的方程。', formula: '\$\$(${newA1.toDouble().toStringAsFixed(2)} - ${newA2.toDouble().toStringAsFixed(2)})x = ${newC1.toDouble().toStringAsFixed(2)} - ${newC2.toDouble().toStringAsFixed(2)} \\Rightarrow ${xCoeff.toDouble().toStringAsFixed(2)}x = ${constCoeff.toDouble().toStringAsFixed(2)}\$\$', ), ); final x = constCoeff / xCoeff; steps.add( CalculationStep( stepNumber: 3, title: '解出 x', explanation: '求解上述方程得到 x 的值。', formula: '\$\$x = $x\$\$', ), ); if (b1.abs() < 1e-9) { final yCoeff = b2; final yConst = c2 - a2 * x.toDouble(); final y = yConst / yCoeff; steps.add( CalculationStep( stepNumber: 4, title: '回代求解 y', explanation: '将 x = ${x.toDouble().toStringAsFixed(4)} 代入原方程(2)中。', formula: ''' \$\$ \\begin{aligned} $a2(${x.toDouble().toStringAsFixed(4)}) + ${b2}y &= $c2 \\\\ ${a2 * x.toDouble()} + ${b2}y &= $c2 \\\\ ${b2}y &= $c2 - ${a2 * x.toDouble()} \\\\ ${b2}y &= ${c2 - a2 * x.toDouble()} \\end{aligned} \$\$ ''', ), ); steps.add( CalculationStep( stepNumber: 5, title: '解出 y', explanation: '求解得到 y 的值。', formula: '\$\$y = ${y.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x = ${x.toDouble().toStringAsFixed(4)}, \\quad y = ${y.toStringAsFixed(4)}\$\$', ); } else { final yCoeff = b1; final yConst = c1 - a1 * x.toDouble(); final y = yConst / yCoeff; steps.add( CalculationStep( stepNumber: 4, title: '回代求解 y', explanation: '将 x = ${x.toDouble().toStringAsFixed(4)} 代入原方程(1)中。', formula: ''' \$\$ \\begin{aligned} $a1(${x.toDouble().toStringAsFixed(4)}) + ${b1}y &= $c1 \\\\ ${a1 * x.toDouble()} + ${b1}y &= $c1 \\\\ ${b1}y &= $c1 - ${a1 * x.toDouble()} \\\\ ${b1}y &= ${c1 - a1 * x.toDouble()} \\end{aligned} \$\$ ''', ), ); steps.add( CalculationStep( stepNumber: 5, title: '解出 y', explanation: '求解得到 y 的值。', formula: '\$\$y = ${y.toStringAsFixed(4)}\$\$', ), ); return CalculationResult( steps: steps, finalAnswer: '\$\$x = ${x.toDouble().toStringAsFixed(4)}, \\quad y = ${y.toStringAsFixed(4)}\$\$', ); } } /// ---- 辅助函数 ---- String _expandExpressions(String input) { String result = input; int maxIterations = 10; // Prevent infinite loops int iterationCount = 0; while (iterationCount < maxIterations) { String oldResult = result; final powerMatch = RegExp( r'(-?\d*\.?\d*)?\(([^)]+)\)\^2', ).firstMatch(result); if (powerMatch != null) { final kStr = powerMatch.group(1); double k = 1.0; if (kStr != null && kStr.isNotEmpty) { k = kStr == '-' ? -1.0 : double.parse(kStr); } final factor = powerMatch.group(2)!; final coeffs = _parsePolynomial(factor); final a = coeffs[1] ?? 0; final b = coeffs[0] ?? 0; final newA = k * a * a; final newB = k * 2 * a * b; final newC = k * b * b; final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(powerMatch.group(0)!, '($expanded)'); iterationCount++; continue; } final factorMulMatch = RegExp( r'\(([^)]+)\)\(([^)]+)\)', ).firstMatch(result); if (factorMulMatch != null) { final factor1 = factorMulMatch.group(1)!; final factor2 = factorMulMatch.group(2)!; print('Expanding: ($factor1) * ($factor2)'); final coeffs1 = _parsePolynomial(factor1); final coeffs2 = _parsePolynomial(factor2); print('Coeffs1: $coeffs1, Coeffs2: $coeffs2'); final a = coeffs1[1] ?? 0; final b = coeffs1[0] ?? 0; final c = coeffs2[1] ?? 0; final d = coeffs2[0] ?? 0; print('a=$a, b=$b, c=$c, d=$d'); final newA = a * c; final newB = a * d + b * c; final newC = b * d; print('newA=$newA, newB=$newB, newC=$newC'); final expanded = '${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; print('Expanded result: $expanded'); result = result.replaceFirst(factorMulMatch.group(0)!, expanded); iterationCount++; continue; } // Handle expressions like x(expr) or (expr)x or coeff(expr) final termFactorMatch = RegExp( r'([+-]?(?:\d*\.?\d*)?x?)\(([^)]+)\)', ).firstMatch(result); if (termFactorMatch != null) { final termStr = termFactorMatch.group(1)!; final factorStr = termFactorMatch.group(2)!; // Skip if the term is just a sign or empty if (termStr == '+' || termStr == '-' || termStr.isEmpty) { break; } // Parse the term (coefficient and x power) final termCoeffs = _parsePolynomial(termStr); final factorCoeffs = _parsePolynomial(factorStr); final termA = termCoeffs[1] ?? 0; // x coefficient final termB = termCoeffs[0] ?? 0; // constant term final factorA = factorCoeffs[1] ?? 0; // x coefficient final factorB = factorCoeffs[0] ?? 0; // constant term // Multiply: (termA*x + termB) * (factorA*x + factorB) final newA = termA * factorA; final newB = termA * factorB + termB * factorA; final newC = termB * factorB; final expanded = '${newA == 1 ? '' : newA == -1 ? '-' : newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC'; result = result.replaceFirst(termFactorMatch.group(0)!, '($expanded)'); iterationCount++; continue; } if (result == oldResult) break; iterationCount++; } if (iterationCount >= maxIterations) { throw Exception('表达式展开过于复杂,请简化输入。'); } // 检查是否为方程(包含等号),如果是的话,将右边的常数项移到左边 if (result.contains('=')) { final parts = result.split('='); if (parts.length == 2) { final leftSide = parts[0]; final rightSide = parts[1]; // 解析左边的多项式 final leftCoeffs = _parsePolynomial(leftSide); final rightCoeffs = _parsePolynomial(rightSide); // 计算标准形式 ax^2 + bx + c = 0 的系数 // A = B 转换为 A - B = 0,所以右边的系数要取相反数 final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0); final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0); final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0); // 构建标准形式的方程 String standardForm = ''; if (a != 0) { standardForm += '${a == 1 ? '' : a == -1 ? '-' : a}x^2'; } if (b != 0) { standardForm += b > 0 ? '+${b}x' : '${b}x'; } if (c != 0) { standardForm += c > 0 ? '+$c' : '$c'; } // 移除开头的加号 if (standardForm.startsWith('+')) { standardForm = standardForm.substring(1); } // 如果所有系数都为0,则方程恒成立 if (standardForm.isEmpty) { standardForm = '0'; } result = '$standardForm=0'; } } return result; } LinearEquationParts _parseLinearEquation(String input) { final parts = input.split('='); if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。"); final leftCoeffs = _parsePolynomial(parts[0]); final rightCoeffs = _parsePolynomial(parts[1]); return LinearEquationParts( (leftCoeffs[1] ?? 0.0), (leftCoeffs[0] ?? 0.0), (rightCoeffs[1] ?? 0.0), (rightCoeffs[0] ?? 0.0), ); } Map _parsePolynomial(String side) { final coeffs = {}; // 如果输入包含括号,去掉括号 var cleanSide = side; if (cleanSide.startsWith('(') && cleanSide.endsWith(')')) { cleanSide = cleanSide.substring(1, cleanSide.length - 1); } // 扩展模式以支持 sqrt 函数 final pattern = RegExp( r'([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))x(?:\^(\d+))?|([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))', ); var s = cleanSide.startsWith('+') || cleanSide.startsWith('-') ? cleanSide : '+$cleanSide'; for (final match in pattern.allMatches(s)) { if (match.group(0)!.isEmpty) continue; // Skip empty matches if (match.group(3) != null) { // 常数项 final constStr = match.group(3)!; final constValue = _parseCoefficientWithSqrt(constStr); coeffs[0] = (coeffs[0] ?? 0) + constValue; } else { // x 的幂次项 int power = match.group(2) != null ? int.parse(match.group(2)!) : 1; String coeffStr = match.group(1) ?? '+'; final coeff = _parseCoefficientWithSqrt(coeffStr); coeffs[power] = (coeffs[power] ?? 0) + coeff; } } return coeffs; } /// 解析包含 sqrt 函数的系数 double _parseCoefficientWithSqrt(String coeffStr) { if (coeffStr.isEmpty || coeffStr == '+') return 1.0; if (coeffStr == '-') return -1.0; // 检查是否包含 sqrt 函数 final sqrtMatch = RegExp(r'sqrt\((\d+)\)').firstMatch(coeffStr); if (sqrtMatch != null) { final innerValue = int.parse(sqrtMatch.group(1)!); // 对于完全平方数,直接返回整数结果 final sqrtValue = sqrt(innerValue.toDouble()); final rounded = sqrtValue.round(); if ((sqrtValue - rounded).abs() < 1e-10) { // 检查是否有系数 final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, ''); if (coeffPart.isEmpty) return rounded.toDouble(); if (coeffPart == '-') return -rounded.toDouble(); final coeff = double.parse(coeffPart); return coeff * rounded; } // 对于非完全平方数,计算数值但保持高精度 final nonPerfectSqrtValue = sqrt(innerValue.toDouble()); // 检查是否有系数 final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, ''); if (coeffPart.isEmpty) return nonPerfectSqrtValue; if (coeffPart == '-') return -nonPerfectSqrtValue; final coeff = double.parse(coeffPart); return coeff * nonPerfectSqrtValue; } // 普通数值 return double.parse(coeffStr); } List _parseTwoVariableLinear(String equation) { final parts = equation.split('='); if (parts.length != 2) throw Exception("方程 $equation 格式错误"); final c = double.tryParse(parts[1]) ?? 0.0; double a = 0, b = 0; final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]); if (xMatch != null) { final coeff = xMatch.group(1); if (coeff == null || coeff.isEmpty || coeff == '+') { a = 1.0; } else if (coeff == '-') { a = -1.0; } else { a = double.tryParse(coeff) ?? 0.0; } } final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]); if (yMatch != null) { final coeff = yMatch.group(1); if (coeff == null || coeff.isEmpty || coeff == '+') { b = 1.0; } else if (coeff == '-') { b = -1.0; } else { b = double.tryParse(coeff) ?? 0.0; } } return [a, b, c]; } ({String formula, String solution})? _tryFactorization(int a, int b, int c) { if (a == 0) return null; int ac = a * c; int absAc = ac.abs(); // Try all divisors of abs(ac) and consider both positive and negative factors for (int d = 1; d <= sqrt(absAc).toInt(); d++) { if (absAc % d == 0) { int d1 = d; int d2 = absAc ~/ d; // Try all sign combinations for the factors // We need m * n = ac and m + n = b List signCombinations = [1, -1]; for (int sign1 in signCombinations) { for (int sign2 in signCombinations) { int m = sign1 * d1; int n = sign2 * d2; if (m + n == b && m * n == ac) { return formatFactor(m, n, a); } // Also try the swapped version m = sign1 * d2; n = sign2 * d1; if (m + n == b && m * n == ac) { return formatFactor(m, n, a); } } } } } return null; } bool check(int m, int n, int b) => m + n == b; ({String formula, String solution}) formatFactor(int m, int n, int a) { // Roots are -m/a and -n/a int g1 = gcd(m.abs(), a.abs()); int root1Num = -m ~/ g1; int root1Den = a ~/ g1; int g2 = gcd(n.abs(), a.abs()); int root2Num = -n ~/ g2; int root2Den = a ~/ g2; String sol1 = _formatFraction(root1Num, root1Den); String sol2 = _formatFraction(root2Num, root2Den); // For formula, show (a x + m)(x + n/a) or simplified String f1 = a == 1 ? 'x' : '${a}x'; f1 = m == 0 ? f1 : '$f1 ${m >= 0 ? '+' : ''} $m'; String f2; if (n % a == 0) { int coeff = n ~/ a; f2 = 'x ${coeff >= 0 ? '+' : ''} $coeff'; if (coeff == 0) f2 = 'x'; } else { f2 = 'x ${n >= 0 ? '+' : ''} \\frac{$n}{$a}'; } String formula = '\$\$($f1)($f2) = 0\$\$'; String solution; if (root1Num * root2Den == root2Num * root1Den) { solution = '\$\$x_1 = x_2 = $sol1\$\$'; } else { solution = '\$\$x_1 = $sol1, \\quad x_2 = $sol2\$\$'; } return (formula: formula, solution: solution); } String _formatFraction(int num, int den) { if (den == 0) return 'undefined'; // Handle sign: make numerator positive, put sign outside bool isNegative = (num < 0) != (den < 0); int absNum = num.abs(); int absDen = den.abs(); // Simplify fraction int g = gcd(absNum, absDen); absNum ~/= g; absDen ~/= g; if (absDen == 1) { return isNegative ? '-$absNum' : '$absNum'; } else { String fraction = '\\frac{$absNum}{$absDen}'; return isNegative ? '-$fraction' : fraction; } } int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b); /// 格式化 Rational 值的平方根表达式,保持符号形式 String _formatSqrtFromRational(Rational value) { if (value == Rational.zero) return '0'; // 处理负数(用于复数根) if (value < Rational.zero) { return '\\sqrt{${(-value).toBigInt()}}'; } // 尝试将 Rational 转换为完全平方数的形式 // 例如: 4/9 -> 2/3, 9/4 -> 3/2, 25/16 -> 5/4 等 // 首先简化分数 final simplified = value; // 检查分子和分母是否都是完全平方数 final numerator = simplified.numerator; final denominator = simplified.denominator; // 寻找分子和分母的平方根因子 BigInt sqrtNumerator = _findSquareRootFactor(numerator); BigInt sqrtDenominator = _findSquareRootFactor(denominator); // 计算剩余的分子和分母 final remainingNumerator = numerator ~/ (sqrtNumerator * sqrtNumerator); final remainingDenominator = denominator ~/ (sqrtDenominator * sqrtDenominator); // 构建结果 String result = ''; // 处理系数部分 if (sqrtNumerator > BigInt.one || sqrtDenominator > BigInt.one) { if (sqrtNumerator > sqrtDenominator) { final coeff = sqrtNumerator ~/ sqrtDenominator; if (coeff > BigInt.one) { result += '$coeff'; } } else if (sqrtDenominator > sqrtNumerator) { // 这会导致分母,需要用分数表示 final coeffNum = sqrtNumerator; final coeffDen = sqrtDenominator; if (coeffNum == BigInt.one) { result += '\\frac{1}{$coeffDen}'; } else { result += '\\frac{$coeffNum}{$coeffDen}'; } } } // 处理根号部分 if (remainingNumerator == BigInt.one && remainingDenominator == BigInt.one) { // 没有根号部分 if (result.isEmpty) { return '1'; } } else if (remainingNumerator == remainingDenominator) { // 根号部分约分后为1 if (result.isEmpty) { return '1'; } } else { // 需要根号 String sqrtContent = ''; if (remainingDenominator == BigInt.one) { sqrtContent = '$remainingNumerator'; } else { sqrtContent = '\\frac{$remainingNumerator}{$remainingDenominator}'; } if (result.isEmpty) { result = '\\sqrt{$sqrtContent}'; } else { result += '\\sqrt{$sqrtContent}'; } } return result.isEmpty ? '1' : result; } /// 寻找一个大整数的平方根因子 BigInt _findSquareRootFactor(BigInt n) { if (n <= BigInt.one) return BigInt.one; BigInt factor = BigInt.one; BigInt i = BigInt.two; while (i * i <= n) { BigInt count = BigInt.zero; while (n % (i * i) == BigInt.zero) { n = n ~/ (i * i); count += BigInt.one; } if (count > BigInt.zero) { factor = factor * i; } i += BigInt.one; } return factor; } /// 格式化二次方程的根:(-b ± sqrt(delta)) / (2a) String _formatQuadraticRoot( double b, Rational delta, double denominator, bool isPlus, ) { final denomInt = denominator.toInt(); final denomStr = denominator == 2 ? '2' : denominator.toString(); // Format sqrt(delta) symbolically using the Rational value final sqrtExpr = _formatSqrtFromRational(delta); if (b == 0) { // 简化为 ±sqrt(delta)/denominator if (denominator == 2) { return isPlus ? '\\frac{$sqrtExpr}{2}' : '-\\frac{$sqrtExpr}{2}'; } else { return isPlus ? '\\frac{$sqrtExpr}{$denomStr}' : '-\\frac{$sqrtExpr}{$denomStr}'; } } else { // 完整的表达式:(-b ± sqrt(delta))/denominator final bInt = b.toInt(); // Check if b is divisible by denominator for simplification if (bInt % denomInt == 0) { // Can simplify: b/denominator becomes integer final simplifiedB = bInt ~/ denomInt; if (simplifiedB == 0) { // Just the sqrt part with correct sign return isPlus ? '$sqrtExpr' : '-$sqrtExpr'; } else if (simplifiedB == 1) { // +1 * sqrt part return isPlus ? '1 + $sqrtExpr' : '1 - $sqrtExpr'; } else if (simplifiedB == -1) { // -1 * sqrt part return isPlus ? '-1 + $sqrtExpr' : '-1 - $sqrtExpr'; } else if (simplifiedB > 0) { // Positive coefficient return isPlus ? '$simplifiedB + $sqrtExpr' : '$simplifiedB - $sqrtExpr'; } else { // Negative coefficient final absB = (-simplifiedB).toString(); return isPlus ? '-$absB + $sqrtExpr' : '-$absB - $sqrtExpr'; } } else { // Cannot simplify, use fraction form final bStr = b > 0 ? '${bInt}' : '(${bInt})'; final signStr = isPlus ? '+' : '-'; final numerator = b > 0 ? '-$bStr $signStr $sqrtExpr' : '(${bInt}) $signStr $sqrtExpr'; if (denominator == 2) { return '\\frac{$numerator}{2}'; } else { return '\\frac{$numerator}{$denomStr}'; } } } } /// 格式化复数根的虚部:sqrt(-delta)/(2a) String _formatImaginaryPart(String sqrtExpr, double denominator) { final denomStr = denominator == 2 ? '2' : denominator.toString(); if (denominator == 2) { return '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{2}i'; } else { return '\\frac{\\sqrt{${sqrtExpr.replaceAll('\\sqrt{', '').replaceAll('}', '')}}}{$denomStr}i'; } } /// 格式化原始方程,保持符号形式 String _formatOriginalEquation(String input) { // Parse the equation and convert to LaTeX String result = input.replaceAll(' ', ''); // 确保方程格式正确 if (!result.contains('=')) { result = '$result=0'; } final parts = result.split('='); if (parts.length == 2) { try { final leftParser = Parser(parts[0]); final leftExpr = leftParser.parse(); final rightParser = Parser(parts[1]); final rightExpr = rightParser.parse(); result = '${leftExpr.toString().replaceAll('*', '\\cdot')}=${rightExpr.toString().replaceAll('*', '\\cdot')}'; } catch (e) { // Fallback to original if parsing fails result = result.replaceAll('sqrt(', '\\sqrt{'); result = result.replaceAll(')', '}'); } } else { try { final parser = Parser(result.split('=')[0]); final expr = parser.parse(); result = '${expr.toString().replaceAll('*', '\\cdot')}=0'; } catch (e) { // Fallback result = result.replaceAll('sqrt(', '\\sqrt{'); result = result.replaceAll(')', '}'); } } return '\$\$$result\$\$'; } /// 解析多项式,保持符号形式 Map _parsePolynomialSymbolic(String side) { final coeffs = {}; // Use a simpler approach: split by terms and parse each term individually var s = side.replaceAll(' ', ''); // Remove spaces if (!s.startsWith('+') && !s.startsWith('-')) { s = '+$s'; } // Split by + and - but be more careful about parentheses and functions final terms = []; int start = 0; int parenDepth = 0; for (int i = 0; i < s.length; i++) { final char = s[i]; if (char == '(') { parenDepth++; } else if (char == ')') { parenDepth--; } // Only split on + or - when not inside parentheses if (parenDepth == 0 && (char == '+' || char == '-') && i > start) { terms.add(s.substring(start, i)); start = i; } } terms.add(s.substring(start)); for (final term in terms) { if (term.isEmpty) continue; // Parse each term final termPattern = RegExp(r'^([+-]?)(.*?)x(?:\^(\d+))?$|^([+-]?)(.*?)$'); final match = termPattern.firstMatch(term); if (match != null) { if (match.group(5) != null) { // Constant term final sign = match.group(4) ?? '+'; final value = match.group(5)!; final coeffStr = sign == '+' && value.isNotEmpty ? value : '$sign$value'; coeffs[0] = _combineCoefficients(coeffs[0], coeffStr); } else { // x term final sign = match.group(1) ?? '+'; final coeffPart = match.group(2) ?? ''; final power = match.group(3) != null ? int.parse(match.group(3)!) : 1; String coeffStr; if (coeffPart.isEmpty) { coeffStr = sign == '+' ? '1' : '-1'; } else { coeffStr = sign == '+' ? coeffPart : '$sign$coeffPart'; } coeffs[power] = _combineCoefficients(coeffs[power], coeffStr); } } } return coeffs; } /// 合并系数,保持符号形式 String _combineCoefficients(String? existing, String newCoeff) { if (existing == null || existing == '0') return newCoeff; if (newCoeff == '0') return existing; // 简化逻辑:如果都是数字,可以相加;否则保持原样 final existingNum = double.tryParse(existing); final newNum = double.tryParse(newCoeff); if (existingNum != null && newNum != null) { final sum = existingNum + newNum; return sum.toString(); } // 如果包含符号表达式,直接连接 return '$existing+$newCoeff'.replaceAll('+-', '-'); } /// 减去系数 String _subtractCoefficients(String a, String b) { if (a == '0') return b.startsWith('-') ? b.substring(1) : '-$b'; if (b == '0') return a; final aNum = double.tryParse(a); final bNum = double.tryParse(b); if (aNum != null && bNum != null) { final result = aNum - bNum; return result.toString(); } // 符号表达式相减 return '$a-${b.startsWith('-') ? b.substring(1) : b}'; } /// 计算判别式,保持符号形式 String _calculateDeltaSymbolic(String a, String b, String c) { // Delta = b^2 - 4ac // 计算 b^2 String bSquared; if (b == '0') { bSquared = '0'; } else if (b == '1') { bSquared = '1'; } else if (b == '-1') { bSquared = '1'; } else if (b.startsWith('-')) { final absB = b.substring(1); bSquared = '$absB^2'; } else { bSquared = '$b^2'; } // 计算 4ac String fourAC; if (a == '0' || c == '0') { fourAC = '0'; } else { // 处理符号 String aCoeff = a; String cCoeff = c; // 如果 a 或 c 是负数,需要处理符号 bool aNegative = a.startsWith('-'); bool cNegative = c.startsWith('-'); if (aNegative) aCoeff = a.substring(1); if (cNegative) cCoeff = c.substring(1); String acProduct; if (aCoeff == '1' && cCoeff == '1') { acProduct = '1'; } else if (aCoeff == '1') { acProduct = cCoeff; } else if (cCoeff == '1') { acProduct = aCoeff; } else { acProduct = '$aCoeff \\cdot $cCoeff'; } // 确定 4ac 的符号 bool productNegative = aNegative != cNegative; String fourACValue = '4 \\cdot $acProduct'; if (productNegative) { fourAC = '-$fourACValue'; } else { fourAC = fourACValue; } } // 计算 Delta = b^2 - 4ac if (bSquared == '0' && fourAC == '0') { return '0'; } else if (bSquared == '0') { return fourAC.startsWith('-') ? fourAC.substring(1) : '-$fourAC'; } else if (fourAC == '0') { return bSquared; } else { String sign = fourAC.startsWith('-') ? '+' : '-'; String absFourAC = fourAC.startsWith('-') ? fourAC.substring(1) : fourAC; return '$bSquared $sign $absFourAC'; } } Rational _rationalFromDouble(double value, {int maxPrecision = 12}) { // 限制小数精度,避免无限循环小数 final str = value.toStringAsFixed(maxPrecision); if (!str.contains('.')) { return Rational.parse(str); } final parts = str.split('.'); final integerPart = parts[0]; final fractionalPart = parts[1]; final numerator = BigInt.parse(integerPart + fractionalPart); final denominator = BigInt.from(10).pow(fractionalPart.length); return Rational(numerator, denominator); } }