564 lines
18 KiB
Dart
564 lines
18 KiB
Dart
import 'dart:math';
|
||
import 'package:flutter/foundation.dart'; // For kDebugMode
|
||
import 'package:math_expressions/math_expressions.dart';
|
||
import 'models/calculation_step.dart';
|
||
|
||
/// 帮助解析一元一次方程 ax+b=cx+d 的辅助类
|
||
class LinearEquationParts {
|
||
final double a, b, c, d;
|
||
LinearEquationParts(this.a, this.b, this.c, this.d);
|
||
}
|
||
|
||
class SolverService {
|
||
/// 主入口方法,识别并分发任务
|
||
CalculationResult solve(String input) {
|
||
// 预处理输入字符串
|
||
final cleanInput = input.replaceAll(' ', '').toLowerCase();
|
||
|
||
// 对包含x的方程进行预处理,展开表达式
|
||
String processedInput = cleanInput;
|
||
if (processedInput.contains('x') && processedInput.contains('(')) {
|
||
processedInput = _expandExpressions(processedInput);
|
||
}
|
||
|
||
// 1. 检查是否为二元一次方程组 (格式: ...;...)
|
||
if (processedInput.contains(';') &&
|
||
processedInput.contains('x') &&
|
||
processedInput.contains('y')) {
|
||
return _solveSystemOfLinearEquations(processedInput);
|
||
}
|
||
|
||
// 2. 检查是否为一元二次方程 (包含 x^2 或 x²)
|
||
if (processedInput.contains('x^2') || processedInput.contains('x²')) {
|
||
return _solveQuadraticEquation(processedInput.replaceAll('x²', 'x^2'));
|
||
}
|
||
|
||
// 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2)
|
||
if (processedInput.contains('x') && !processedInput.contains('y')) {
|
||
return _solveLinearEquation(processedInput);
|
||
}
|
||
|
||
// 4. 如果都不是,则作为简单表达式计算
|
||
try {
|
||
return _solveSimpleExpression(input); // 使用原始输入以保留运算符
|
||
} catch (e) {
|
||
if (kDebugMode) {
|
||
print(e);
|
||
}
|
||
throw Exception('无法识别的格式。请检查您的方程或表达式。');
|
||
}
|
||
}
|
||
|
||
/// ---- 求解器实现 ----
|
||
|
||
/// 1. 求解简单表达式
|
||
CalculationResult _solveSimpleExpression(String input) {
|
||
final steps = <CalculationStep>[];
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第一步:表达式求值",
|
||
explanation: "这是一个标准的数学表达式,我们将直接计算其结果。",
|
||
formula: input,
|
||
),
|
||
);
|
||
|
||
// **FIXED**: Correct usage of the math_expressions library
|
||
Parser p = Parser();
|
||
Expression exp = p.parse(input);
|
||
ContextModel cm = ContextModel();
|
||
final result = exp.evaluate(EvaluationType.REAL, cm);
|
||
|
||
return CalculationResult(steps: steps, finalAnswer: result.toString());
|
||
}
|
||
|
||
/// 2. 求解一元一次方程
|
||
CalculationResult _solveLinearEquation(String input) {
|
||
final steps = <CalculationStep>[];
|
||
steps.add(
|
||
CalculationStep(title: "原方程", explanation: "这是一元一次方程。", formula: input),
|
||
);
|
||
|
||
// 解析方程: ax+b=cx+d
|
||
final parts = _parseLinearEquation(input);
|
||
final a = parts.a, b = parts.b, c = parts.c, d = parts.d;
|
||
|
||
// 移项合并
|
||
final newA = a - c;
|
||
final newD = d - b;
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第一步:移项",
|
||
explanation: "将所有含 x 的项移到等式左边,常数项移到右边。",
|
||
formula:
|
||
"${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}",
|
||
),
|
||
);
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第二步:合并同类项",
|
||
explanation: "合并等式两边的项。",
|
||
formula: "${newA}x = $newD",
|
||
),
|
||
);
|
||
|
||
// 求解x
|
||
if (newA == 0) {
|
||
if (newD == 0) {
|
||
return CalculationResult(steps: steps, finalAnswer: "有无穷多解");
|
||
} else {
|
||
return CalculationResult(steps: steps, finalAnswer: "无解");
|
||
}
|
||
}
|
||
|
||
final x = newD / newA;
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第三步:求解 x",
|
||
explanation: "两边同时除以 x 的系数 ($newA)。",
|
||
formula: "x = $newD / $newA",
|
||
),
|
||
);
|
||
|
||
return CalculationResult(steps: steps, finalAnswer: "x = $x");
|
||
}
|
||
|
||
/// 3. 求解一元二次方程 (升级版)
|
||
CalculationResult _solveQuadraticEquation(String input) {
|
||
final steps = <CalculationStep>[];
|
||
|
||
// 整理成 ax^2+bx+c=0 的形式并提取系数
|
||
final eqParts = input.split('=');
|
||
if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。");
|
||
|
||
final leftCoeffs = _parsePolynomial(eqParts[0]);
|
||
final rightCoeffs = _parsePolynomial(eqParts[1]);
|
||
|
||
// 移项合并
|
||
final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0);
|
||
final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0);
|
||
final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0);
|
||
|
||
if (a == 0) {
|
||
// 如果 a=0, 这实际上是一个一元一次方程
|
||
return _solveLinearEquation("${b}x+${c}=0");
|
||
}
|
||
|
||
// **FIXED**: Corrected typo 'ax' to 'a'
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第一步:整理方程",
|
||
explanation: "将方程整理成标准形式 ax^2+bx+c=0。",
|
||
formula:
|
||
"${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0",
|
||
),
|
||
);
|
||
|
||
// 尝试因式分解 (十字相乘法)
|
||
if (a == a.round() && b == b.round() && c == c.round()) {
|
||
final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt());
|
||
if (factors != null) {
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第二步:因式分解法 (十字相乘)",
|
||
explanation: "我们发现可以将方程分解为两个一次因式的乘积。",
|
||
formula: factors.formula,
|
||
),
|
||
);
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第三步:求解",
|
||
explanation: "分别令每个因式等于 0,解出 x。",
|
||
formula: "解得 ${factors.solution}",
|
||
),
|
||
);
|
||
|
||
return CalculationResult(steps: steps, finalAnswer: factors.solution);
|
||
} else {
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第二步:选择解法",
|
||
explanation: "尝试因式分解失败,我们选择使用求根公式法。",
|
||
formula: "\$\\Delta = b^2 - 4ac\$",
|
||
),
|
||
);
|
||
}
|
||
} else {
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第二步:选择解法",
|
||
explanation: "系数包含小数,我们使用求根公式法。",
|
||
formula: "\$\\Delta = b^2 - 4ac\$",
|
||
),
|
||
);
|
||
}
|
||
|
||
// 使用求根公式法
|
||
final delta = b * b - 4 * a * c;
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第三步:计算判别式 (Delta)",
|
||
explanation: "\$\\Delta = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta",
|
||
// **FIXED**: Removed unnecessary braces for linter warning
|
||
formula: "\$\\Delta = $delta",
|
||
),
|
||
);
|
||
|
||
if (delta > 0) {
|
||
final x1 = (-b + sqrt(delta)) / (2 * a);
|
||
final x2 = (-b - sqrt(delta)) / (2 * a);
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第四步:应用求根公式",
|
||
explanation:
|
||
"因为 \$\\Delta > 0\$,方程有两个不相等的实数根。公式: \$x = \\frac{-b \\pm \\sqrt{\\Delta}}{2a}\$",
|
||
formula:
|
||
"x₁ = ${x1.toStringAsFixed(4)}, x₂ = ${x2.toStringAsFixed(4)}",
|
||
),
|
||
);
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer:
|
||
"x₁ = ${x1.toStringAsFixed(4)}, x₂ = ${x2.toStringAsFixed(4)}",
|
||
);
|
||
} else if (delta == 0) {
|
||
final x = -b / (2 * a);
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第四步:应用求根公式",
|
||
explanation: "因为 \$\Delta = 0\$,方程有两个相等的实数根。",
|
||
formula: "x₁ = x₂ = ${x.toStringAsFixed(4)}",
|
||
),
|
||
);
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: "x₁ = x₂ = ${x.toStringAsFixed(4)}",
|
||
);
|
||
} else {
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第四步:判断解",
|
||
explanation: "因为 \$\Delta < 0\$,该方程在实数范围内无解。",
|
||
formula: "无实数解",
|
||
),
|
||
);
|
||
return CalculationResult(steps: steps, finalAnswer: "无实数解");
|
||
}
|
||
}
|
||
|
||
/// 4. 求解二元一次方程组
|
||
CalculationResult _solveSystemOfLinearEquations(String input) {
|
||
final steps = <CalculationStep>[];
|
||
final equations = input.split(';');
|
||
if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。");
|
||
|
||
final p1 = _parseTwoVariableLinear(equations[0]);
|
||
final p2 = _parseTwoVariableLinear(equations[1]);
|
||
|
||
double a1 = p1[0], b1 = p1[1], c1 = p1[2];
|
||
double a2 = p2[0], b2 = p2[1], c2 = p2[2];
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "原始方程组",
|
||
explanation: "这是一个二元一次方程组,我们将使用加减消元法求解。",
|
||
formula:
|
||
"${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 ---(1)\n${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 ---(2)",
|
||
),
|
||
);
|
||
|
||
final det = a1 * b2 - a2 * b1;
|
||
if (det == 0) {
|
||
if (a1 * c2 - a2 * c1 == 0) {
|
||
return CalculationResult(steps: steps, finalAnswer: "有无穷多解");
|
||
} else {
|
||
return CalculationResult(steps: steps, finalAnswer: "无解");
|
||
}
|
||
}
|
||
|
||
final newA1 = a1 * b2, newC1 = c1 * b2;
|
||
final newA2 = a2 * b1, newC2 = c2 * b1;
|
||
|
||
// **FIXED**: Wrapped calculations in braces {} for string interpolation
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第一步:消元",
|
||
explanation: "为了消去变量 y,将方程(1)两边乘以 $b2\$,方程(2)两边乘以 $b1\$。",
|
||
formula:
|
||
"${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 ---(3)\n${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 ---(4)",
|
||
),
|
||
);
|
||
|
||
final xCoeff = newA1 - newA2;
|
||
final constCoeff = newC1 - newC2;
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第二步:相减",
|
||
explanation: "将方程(3)减去方程(4),得到一个只含 x 的方程。",
|
||
formula:
|
||
"($newA1 - $newA2)x = $newC1 - $newC2 \n=> ${xCoeff}x = $constCoeff",
|
||
),
|
||
);
|
||
|
||
final x = constCoeff / xCoeff;
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第三步:解出 x",
|
||
explanation: "求解上述方程得到 x 的值。",
|
||
formula: "x = $x",
|
||
),
|
||
);
|
||
|
||
// **FIXED**: Added a check for b1 to avoid division by zero if we substitute into an equation without y.
|
||
if (b1.abs() < 1e-9) {
|
||
// If b1 is very close to 0, use the second equation
|
||
final yCoeff = b2;
|
||
final yConst = c2 - a2 * x;
|
||
final y = yConst / yCoeff;
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第四步:回代求解 y",
|
||
explanation: "将 x = $x 代入原方程(2)中。",
|
||
// **FIXED**: Corrected string interpolation for calculations and substitutions
|
||
formula:
|
||
"${a2}(${x}) + ${b2}y = $c2 \n=> ${a2 * x} + ${b2}y = $c2 \n=> ${b2}y = $c2 - ${a2 * x} \n=> ${b2}y = ${c2 - a2 * x}",
|
||
),
|
||
);
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第五步:解出 y",
|
||
explanation: "求解得到 y 的值。",
|
||
formula: "y = $y",
|
||
),
|
||
);
|
||
return CalculationResult(steps: steps, finalAnswer: "x = $x, y = $y");
|
||
} else {
|
||
// Default case, substitute into the first equation
|
||
final yCoeff = b1;
|
||
final yConst = c1 - a1 * x;
|
||
final y = yConst / yCoeff;
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第四步:回代求解 y",
|
||
explanation: "将 x = $x 代入原方程(1)中。",
|
||
formula:
|
||
"${a1}(${x}) + ${b1}y = $c1 \n=> ${a1 * x} + ${b1}y = $c1 \n=> ${b1}y = $c1 - ${a1 * x} \n=> ${b1}y = ${c1 - a1 * x}",
|
||
),
|
||
);
|
||
steps.add(
|
||
CalculationStep(
|
||
title: "第五步:解出 y",
|
||
explanation: "求解得到 y 的值。",
|
||
formula: "y = $y",
|
||
),
|
||
);
|
||
return CalculationResult(steps: steps, finalAnswer: "x = $x, y = $y");
|
||
}
|
||
}
|
||
|
||
/// ---- 辅助函数 ----
|
||
|
||
/// 展开表达式,例如 (x-1)(x+2) -> x^2+x-2
|
||
String _expandExpressions(String input) {
|
||
String result = input;
|
||
// 循环直到没有更多的表达式可以展开
|
||
while (true) {
|
||
String oldResult = result;
|
||
|
||
// 模式1: k*(ax+b)^2, 例如 4(x-1)^2 or (x-1)^2
|
||
final powerMatch = RegExp(
|
||
r'(-?\d*\.?\d*)?\(([^)]+)\)\^2',
|
||
).firstMatch(result);
|
||
if (powerMatch != null) {
|
||
final kStr = powerMatch.group(1);
|
||
double k = 1.0;
|
||
if (kStr != null && kStr.isNotEmpty) {
|
||
if (kStr == '-') {
|
||
k = -1.0;
|
||
} else {
|
||
k = double.parse(kStr);
|
||
}
|
||
}
|
||
|
||
final factor = powerMatch.group(2)!;
|
||
final coeffs = _parsePolynomial(factor);
|
||
final a = coeffs[1] ?? 0;
|
||
final b = coeffs[0] ?? 0;
|
||
|
||
// (ax+b)^2 = a^2*x^2 + 2ab*x + b^2
|
||
final newA = k * a * a;
|
||
final newB = k * 2 * a * b;
|
||
final newC = k * b * b;
|
||
|
||
final expanded =
|
||
"${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}${newC}";
|
||
result = result.replaceFirst(powerMatch.group(0)!, "($expanded)");
|
||
continue; // 重新开始循环以处理嵌套表达式
|
||
}
|
||
|
||
// 模式2: (ax+b)(cx+d), 例如 (x-3)(x+2)
|
||
final factorMulMatch = RegExp(
|
||
r'\(([^)]+)\)\(([^)]+)\)',
|
||
).firstMatch(result);
|
||
if (factorMulMatch != null) {
|
||
final factor1 = factorMulMatch.group(1)!;
|
||
final factor2 = factorMulMatch.group(2)!;
|
||
final coeffs1 = _parsePolynomial(factor1);
|
||
final coeffs2 = _parsePolynomial(factor2);
|
||
|
||
final a = coeffs1[1] ?? 0;
|
||
final b = coeffs1[0] ?? 0;
|
||
final c = coeffs2[1] ?? 0;
|
||
final d = coeffs2[0] ?? 0;
|
||
|
||
// (ax+b)(cx+d) = ac*x^2 + (ad+bc)*x + bd
|
||
final newA = a * c;
|
||
final newB = a * d + b * c;
|
||
final newC = b * d;
|
||
|
||
final expanded =
|
||
"${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}${newC}";
|
||
result = result.replaceFirst(factorMulMatch.group(0)!, "($expanded)");
|
||
continue; // 重新开始循环
|
||
}
|
||
|
||
// 如果在这次迭代中没有改变,则跳出循环
|
||
if (result == oldResult) {
|
||
break;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
LinearEquationParts _parseLinearEquation(String input) {
|
||
final parts = input.split('=');
|
||
if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。");
|
||
|
||
final leftCoeffs = _parsePolynomial(parts[0]);
|
||
final rightCoeffs = _parsePolynomial(parts[1]);
|
||
|
||
final a = leftCoeffs[1] ?? 0.0;
|
||
final b = leftCoeffs[0] ?? 0.0;
|
||
final c = rightCoeffs[1] ?? 0.0;
|
||
final d = rightCoeffs[0] ?? 0.0;
|
||
|
||
return LinearEquationParts(a, b, c, d);
|
||
}
|
||
|
||
Map<int, double> _parsePolynomial(String side) {
|
||
final coeffs = <int, double>{};
|
||
final pattern = RegExp(
|
||
r'([+-]?(?:\d*\.?\d*))?x(?:\^(\d+))?|([+-]?\d*\.?\d+)',
|
||
);
|
||
var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side';
|
||
|
||
for (final match in pattern.allMatches(s)) {
|
||
if (match.group(3) != null) {
|
||
coeffs[0] = (coeffs[0] ?? 0) + double.parse(match.group(3)!);
|
||
} else {
|
||
int power = match.group(2) != null ? int.parse(match.group(2)!) : 1;
|
||
String coeffStr = match.group(1) ?? '+';
|
||
double coeff = 1.0;
|
||
if (coeffStr.isNotEmpty && coeffStr != '+') {
|
||
if (coeffStr == '-') {
|
||
coeff = -1.0;
|
||
} else {
|
||
coeff = double.parse(coeffStr);
|
||
}
|
||
} else if (coeffStr == '-') {
|
||
coeff = -1.0;
|
||
}
|
||
coeffs[power] = (coeffs[power] ?? 0) + coeff;
|
||
}
|
||
}
|
||
return coeffs;
|
||
}
|
||
|
||
List<double> _parseTwoVariableLinear(String equation) {
|
||
final parts = equation.split('=');
|
||
if (parts.length != 2) throw Exception("方程 $equation 格式错误");
|
||
final c = double.tryParse(parts[1]) ?? 0.0;
|
||
|
||
double a = 0, b = 0;
|
||
final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]);
|
||
if (xMatch != null) {
|
||
final coeff = xMatch.group(1);
|
||
if (coeff == null || coeff == '+') {
|
||
a = 1.0;
|
||
} else if (coeff == '-') {
|
||
a = -1.0;
|
||
} else {
|
||
a = double.tryParse(coeff) ?? 0.0;
|
||
}
|
||
}
|
||
final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]);
|
||
if (yMatch != null) {
|
||
final coeff = yMatch.group(1);
|
||
if (coeff == null || coeff == '+') {
|
||
b = 1.0;
|
||
} else if (coeff == '-') {
|
||
b = -1.0;
|
||
} else {
|
||
b = double.tryParse(coeff) ?? 0.0;
|
||
}
|
||
}
|
||
return [a, b, c];
|
||
}
|
||
|
||
({String formula, String solution})? _tryFactorization(int a, int b, int c) {
|
||
if (a == 0) return null;
|
||
int ac = a * c;
|
||
for (int i = 1; i <= sqrt(ac.abs()); i++) {
|
||
if (ac % i == 0) {
|
||
int j = ac ~/ i;
|
||
if (check(i, j, b)) return formatFactor(i, j, a);
|
||
if (check(-i, -j, b)) return formatFactor(-i, -j, a);
|
||
if (check(i, -j, b)) return formatFactor(i, -j, a);
|
||
if (check(-i, j, b)) return formatFactor(-i, j, a);
|
||
}
|
||
}
|
||
return null;
|
||
}
|
||
|
||
// **FIXED**: Simplified check method
|
||
bool check(int m, int n, int b) {
|
||
return m + n == b;
|
||
}
|
||
|
||
({String formula, String solution}) formatFactor(int m, int n, int a) {
|
||
int common = gcd(n.abs(), a.abs());
|
||
int num = n ~/ common;
|
||
int den = a ~/ common;
|
||
|
||
final a1 = den;
|
||
final c1 = num;
|
||
final a2 = a ~/ den;
|
||
final c2 = m ~/ a2;
|
||
|
||
// **FIXED**: Correctly handle coefficients of 1
|
||
final f1Part1 = a1 == 1 ? 'x' : '${a1}x';
|
||
final f1 = c1 == 0 ? f1Part1 : "$f1Part1 ${c1 >= 0 ? '+' : ''} $c1";
|
||
|
||
final f2Part1 = a2 == 1 ? 'x' : '${a2}x';
|
||
final f2 = c2 == 0 ? f2Part1 : "$f2Part1 ${c2 >= 0 ? '+' : ''} $c2";
|
||
|
||
// **FIXED**: Renamed variables to lowerCamelCase
|
||
final int x1Num = -c1, x1Den = a1;
|
||
final int x2Num = -c2, x2Den = a2;
|
||
|
||
final sol1 = x1Den == 1 ? "$x1Num" : "$x1Num/$x1Den";
|
||
final sol2 = x2Den == 1 ? "$x2Num" : "$x2Num/$x2Den";
|
||
|
||
final solution = x1Num * x2Den == x2Num * x1Den
|
||
? "x₁ = x₂ = $sol1"
|
||
: "x₁ = $sol1, x₂ = $sol2";
|
||
|
||
return (formula: "(${f1})(${f2}) = 0", solution: solution);
|
||
}
|
||
|
||
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
|
||
}
|