944 lines
28 KiB
Dart
944 lines
28 KiB
Dart
import 'dart:math';
|
||
import 'package:flutter/foundation.dart'; // For kDebugMode
|
||
import 'package:math_expressions/math_expressions.dart';
|
||
import 'models/calculation_step.dart';
|
||
|
||
/// 帮助解析一元一次方程 ax+b=cx+d 的辅助类
|
||
class LinearEquationParts {
|
||
final double a, b, c, d;
|
||
LinearEquationParts(this.a, this.b, this.c, this.d);
|
||
}
|
||
|
||
class SolverService {
|
||
/// 主入口方法,识别并分发任务
|
||
CalculationResult solve(String input) {
|
||
// 预处理输入字符串
|
||
final cleanInput = input.replaceAll(' ', '').toLowerCase();
|
||
|
||
// 对包含x的方程进行预处理,展开表达式
|
||
String processedInput = cleanInput;
|
||
if (processedInput.contains('x') && processedInput.contains('(')) {
|
||
processedInput = _expandExpressions(processedInput);
|
||
}
|
||
|
||
// 1. 检查是否为二元一次方程组 (格式: ...;...)
|
||
if (processedInput.contains(';') &&
|
||
processedInput.contains('x') &&
|
||
processedInput.contains('y')) {
|
||
return _solveSystemOfLinearEquations(processedInput);
|
||
}
|
||
|
||
// 2. 检查是否为一元二次方程 (包含 x^2 或 x²)
|
||
if (processedInput.contains('x^2') || processedInput.contains('x²')) {
|
||
return _solveQuadraticEquation(processedInput.replaceAll('x²', 'x^2'));
|
||
}
|
||
|
||
// 3. 检查是否为一元一次方程 (包含 x 但不包含 y 或 x^2)
|
||
if (processedInput.contains('x') && !processedInput.contains('y')) {
|
||
return _solveLinearEquation(processedInput);
|
||
}
|
||
|
||
// 4. 如果都不是,则作为简单表达式计算
|
||
try {
|
||
return _solveSimpleExpression(input); // 使用原始输入以保留运算符
|
||
} catch (e) {
|
||
if (kDebugMode) {
|
||
print(e);
|
||
}
|
||
throw Exception('无法识别的格式。请检查您的方程或表达式。');
|
||
}
|
||
}
|
||
|
||
/// ---- 求解器实现 ----
|
||
|
||
/// 1. 求解简单表达式
|
||
CalculationResult _solveSimpleExpression(String input) {
|
||
final steps = <CalculationStep>[];
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 1,
|
||
title: '表达式求值',
|
||
explanation: '这是一个标准的数学表达式,我们将直接计算其结果。',
|
||
formula: '\$\$$input\$\$',
|
||
),
|
||
);
|
||
|
||
// 检查是否为特殊三角函数值,可以返回精确结果
|
||
final exactTrigResult = _getExactTrigResult(input);
|
||
if (exactTrigResult != null) {
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: '\$\$$exactTrigResult\$\$',
|
||
);
|
||
}
|
||
|
||
// 预处理输入,将三角函数的参数从度转换为弧度
|
||
String processedInput = _convertTrigToRadians(input);
|
||
|
||
GrammarParser p = GrammarParser();
|
||
Expression exp = p.parse(processedInput);
|
||
final result = RealEvaluator().evaluate(exp).toDouble();
|
||
|
||
// 尝试将结果格式化为几倍根号的形式
|
||
final formattedResult = _formatSqrtResult(result);
|
||
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: '\$\$$formattedResult\$\$',
|
||
);
|
||
}
|
||
|
||
/// 2. 求解一元一次方程
|
||
CalculationResult _solveLinearEquation(String input) {
|
||
final steps = <CalculationStep>[];
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 0,
|
||
title: '原方程',
|
||
explanation: '这是一元一次方程。',
|
||
formula: '\$\$$input\$\$',
|
||
),
|
||
);
|
||
|
||
final parts = _parseLinearEquation(input);
|
||
final a = parts.a, b = parts.b, c = parts.c, d = parts.d;
|
||
|
||
final newA = a - c;
|
||
final newD = d - b;
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 1,
|
||
title: '移项',
|
||
explanation: '将所有含 x 的项移到等式左边,常数项移到右边。',
|
||
formula:
|
||
'\$\$${a}x ${c >= 0 ? '-' : '+'} ${c.abs()}x = $d ${b >= 0 ? '-' : '+'} ${b.abs()}\$\$',
|
||
),
|
||
);
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 2,
|
||
title: '合并同类项',
|
||
explanation: '合并等式两边的项。',
|
||
formula: '\$\$${newA}x = $newD\$\$',
|
||
),
|
||
);
|
||
|
||
if (newA == 0) {
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: newD == 0 ? '有无穷多解' : '无解',
|
||
);
|
||
}
|
||
|
||
final x = newD / newA;
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 3,
|
||
title: '求解 x',
|
||
explanation: '两边同时除以 x 的系数 ($newA)。',
|
||
formula: '\$\$x = \\frac{$newD}{$newA}\$\$',
|
||
),
|
||
);
|
||
|
||
return CalculationResult(steps: steps, finalAnswer: '\$\$x = $x\$\$');
|
||
}
|
||
|
||
/// 3. 求解一元二次方程 (升级版)
|
||
CalculationResult _solveQuadraticEquation(String input) {
|
||
final steps = <CalculationStep>[];
|
||
|
||
final eqParts = input.split('=');
|
||
if (eqParts.length != 2) throw Exception("方程格式错误,应包含一个 '='。");
|
||
|
||
final leftCoeffs = _parsePolynomial(eqParts[0]);
|
||
final rightCoeffs = _parsePolynomial(eqParts[1]);
|
||
|
||
final a = (leftCoeffs[2] ?? 0) - (rightCoeffs[2] ?? 0);
|
||
final b = (leftCoeffs[1] ?? 0) - (rightCoeffs[1] ?? 0);
|
||
final c = (leftCoeffs[0] ?? 0) - (rightCoeffs[0] ?? 0);
|
||
|
||
if (a == 0) {
|
||
return _solveLinearEquation('${b}x+$c=0');
|
||
}
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 1,
|
||
title: '整理方程',
|
||
explanation: r'将方程整理成标准形式 $ax^2+bx+c=0$。',
|
||
formula:
|
||
'\$\$${a}x^2 ${b >= 0 ? '+' : ''} ${b}x ${c >= 0 ? '+' : ''} $c = 0\$\$',
|
||
),
|
||
);
|
||
|
||
if (a == a.round() && b == b.round() && c == c.round()) {
|
||
final factors = _tryFactorization(a.toInt(), b.toInt(), c.toInt());
|
||
if (factors != null) {
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 2,
|
||
title: '因式分解法 (十字相乘)',
|
||
explanation: '我们发现可以将方程分解为两个一次因式的乘积。',
|
||
formula: factors.formula,
|
||
),
|
||
);
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 3,
|
||
title: '求解',
|
||
explanation: '分别令每个因式等于 0,解出 x。',
|
||
formula: factors.solution,
|
||
),
|
||
);
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 4,
|
||
title: '化简结果',
|
||
explanation: '将分数化简到最简形式,并将负号写在分数外面。',
|
||
formula: factors.solution,
|
||
),
|
||
);
|
||
return CalculationResult(steps: steps, finalAnswer: factors.solution);
|
||
}
|
||
}
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 2,
|
||
title: '选择解法',
|
||
explanation: '无法进行因式分解,我们选择使用求根公式法。',
|
||
formula: '\$\$\\Delta = b^2 - 4ac\$\$',
|
||
),
|
||
);
|
||
|
||
final delta = b * b - 4 * a * c;
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 3,
|
||
title: '计算判别式 (Delta)',
|
||
explanation:
|
||
'\$\$\\Delta = b^2 - 4ac = ($b)^2 - 4 \\cdot ($a) \\cdot ($c) = $delta\$\$',
|
||
formula: '\$\$\\Delta = $delta\$\$',
|
||
),
|
||
);
|
||
|
||
if (delta > 0) {
|
||
final x1 = (-b + sqrt(delta)) / (2 * a);
|
||
final x2 = (-b - sqrt(delta)) / (2 * a);
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 4,
|
||
title: '应用求根公式',
|
||
explanation:
|
||
r'因为 $\Delta > 0$,方程有两个不相等的实数根。公式: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$。',
|
||
formula:
|
||
'\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$',
|
||
),
|
||
);
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer:
|
||
'\$\$x_1 = ${x1.toStringAsFixed(4)}, \\quad x_2 = ${x2.toStringAsFixed(4)}\$\$',
|
||
);
|
||
} else if (delta == 0) {
|
||
final x = -b / (2 * a);
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 4,
|
||
title: '应用求根公式',
|
||
explanation: r'因为 $\Delta = 0$,方程有两个相等的实数根。',
|
||
formula: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
|
||
),
|
||
);
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: '\$\$x_1 = x_2 = ${x.toStringAsFixed(4)}\$\$',
|
||
);
|
||
} else {
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 4,
|
||
title: '判断解',
|
||
explanation: r'因为 $\Delta < 0$,该方程在实数范围内无解,但有虚数解。',
|
||
formula: '无实数解,有虚数解',
|
||
),
|
||
);
|
||
|
||
final sqrtDelta = sqrt(-delta);
|
||
final realPart = -b / (2 * a);
|
||
final imagPart = sqrtDelta / (2 * a);
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 5,
|
||
title: '计算虚数根',
|
||
explanation: '使用求根公式计算虚数根。',
|
||
formula: r'$$x = \frac{-b \pm \sqrt{-\Delta} i}{2a}$$',
|
||
),
|
||
);
|
||
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer:
|
||
'\$\$x_1 = ${realPart.toStringAsFixed(4)} + ${imagPart.toStringAsFixed(4)}i, \\quad x_2 = ${realPart.toStringAsFixed(4)} - ${imagPart.toStringAsFixed(4)}i\$\$',
|
||
);
|
||
}
|
||
}
|
||
|
||
/// 4. 求解二元一次方程组
|
||
CalculationResult _solveSystemOfLinearEquations(String input) {
|
||
final steps = <CalculationStep>[];
|
||
final equations = input.split(';');
|
||
if (equations.length != 2) throw Exception("格式错误, 请用 ';' 分隔两个方程。");
|
||
|
||
final p1 = _parseTwoVariableLinear(equations[0]);
|
||
final p2 = _parseTwoVariableLinear(equations[1]);
|
||
|
||
double a1 = p1[0], b1 = p1[1], c1 = p1[2];
|
||
double a2 = p2[0], b2 = p2[1], c2 = p2[2];
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 0,
|
||
title: '原始方程组',
|
||
explanation: '这是一个二元一次方程组,我们将使用加减消元法求解。',
|
||
formula:
|
||
'''
|
||
\$\$
|
||
\\begin{cases}
|
||
${a1}x ${b1 >= 0 ? '+' : ''} ${b1}y = $c1 & (1) \\\\
|
||
${a2}x ${b2 >= 0 ? '+' : ''} ${b2}y = $c2 & (2)
|
||
\\end{cases}
|
||
\$\$
|
||
''',
|
||
),
|
||
);
|
||
|
||
final det = a1 * b2 - a2 * b1;
|
||
if (det == 0) {
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: a1 * c2 - a2 * c1 == 0 ? '有无穷多解' : '无解',
|
||
);
|
||
}
|
||
|
||
final newA1 = a1 * b2, newC1 = c1 * b2;
|
||
final newA2 = a2 * b1, newC2 = c2 * b1;
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 1,
|
||
title: '消元',
|
||
explanation: '为了消去变量 y,将方程(1)两边乘以 $b2,方程(2)两边乘以 $b1。',
|
||
formula:
|
||
'''
|
||
\$\$
|
||
\\begin{cases}
|
||
${newA1}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC1 & (3) \\\\
|
||
${newA2}x ${b1 * b2 >= 0 ? '+' : ''} ${b1 * b2}y = $newC2 & (4)
|
||
\\end{cases}
|
||
\$\$
|
||
''',
|
||
),
|
||
);
|
||
|
||
final xCoeff = newA1 - newA2;
|
||
final constCoeff = newC1 - newC2;
|
||
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 2,
|
||
title: '相减',
|
||
explanation: '将方程(3)减去方程(4),得到一个只含 x 的方程。',
|
||
formula:
|
||
'\$\$($newA1 - $newA2)x = $newC1 - $newC2 \\Rightarrow ${xCoeff}x = $constCoeff\$\$',
|
||
),
|
||
);
|
||
|
||
final x = constCoeff / xCoeff;
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 3,
|
||
title: '解出 x',
|
||
explanation: '求解上述方程得到 x 的值。',
|
||
formula: '\$\$x = $x\$\$',
|
||
),
|
||
);
|
||
|
||
if (b1.abs() < 1e-9) {
|
||
final yCoeff = b2;
|
||
final yConst = c2 - a2 * x;
|
||
final y = yConst / yCoeff;
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 4,
|
||
title: '回代求解 y',
|
||
explanation: '将 x = $x 代入原方程(2)中。',
|
||
formula:
|
||
'''
|
||
\$\$
|
||
\\begin{aligned}
|
||
$a2($x) + ${b2}y &= $c2 \\\\
|
||
${a2 * x} + ${b2}y &= $c2 \\\\
|
||
${b2}y &= $c2 - ${a2 * x} \\\\
|
||
${b2}y &= ${c2 - a2 * x}
|
||
\\end{aligned}
|
||
\$\$
|
||
''',
|
||
),
|
||
);
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 5,
|
||
title: '解出 y',
|
||
explanation: '求解得到 y 的值。',
|
||
formula: '\$\$y = $y\$\$',
|
||
),
|
||
);
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: '\$\$x = $x, \\quad y = $y\$\$',
|
||
);
|
||
} else {
|
||
final yCoeff = b1;
|
||
final yConst = c1 - a1 * x;
|
||
final y = yConst / yCoeff;
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 4,
|
||
title: '回代求解 y',
|
||
explanation: '将 x = $x 代入原方程(1)中。',
|
||
formula:
|
||
'''
|
||
\$\$
|
||
\\begin{aligned}
|
||
$a1($x) + ${b1}y &= $c1 \\\\
|
||
${a1 * x} + ${b1}y &= $c1 \\\\
|
||
${b1}y &= $c1 - ${a1 * x} \\\\
|
||
${b1}y &= ${c1 - a1 * x}
|
||
\\end{aligned}
|
||
\$\$
|
||
''',
|
||
),
|
||
);
|
||
steps.add(
|
||
CalculationStep(
|
||
stepNumber: 5,
|
||
title: '解出 y',
|
||
explanation: '求解得到 y 的值。',
|
||
formula: '\$\$y = $y\$\$',
|
||
),
|
||
);
|
||
return CalculationResult(
|
||
steps: steps,
|
||
finalAnswer: '\$\$x = $x, \\quad y = $y\$\$',
|
||
);
|
||
}
|
||
}
|
||
|
||
/// ---- 辅助函数 ----
|
||
|
||
/// 获取精确三角函数结果
|
||
String? _getExactTrigResult(String input) {
|
||
final cleanInput = input.replaceAll(' ', '').toLowerCase();
|
||
|
||
// 匹配 sin(角度) 模式
|
||
final sinMatch = RegExp(r'^sin\((\d+(?:\+\d+)*)\)$').firstMatch(cleanInput);
|
||
if (sinMatch != null) {
|
||
final angleExpr = sinMatch.group(1)!;
|
||
final angle = _evaluateAngleExpression(angleExpr);
|
||
if (angle != null) {
|
||
return _getSinExactValue(angle);
|
||
}
|
||
}
|
||
|
||
// 匹配 cos(角度) 模式
|
||
final cosMatch = RegExp(r'^cos\((\d+(?:\+\d+)*)\)$').firstMatch(cleanInput);
|
||
if (cosMatch != null) {
|
||
final angleExpr = cosMatch.group(1)!;
|
||
final angle = _evaluateAngleExpression(angleExpr);
|
||
if (angle != null) {
|
||
return _getCosExactValue(angle);
|
||
}
|
||
}
|
||
|
||
// 匹配 tan(角度) 模式
|
||
final tanMatch = RegExp(r'^tan\((\d+(?:\+\d+)*)\)$').firstMatch(cleanInput);
|
||
if (tanMatch != null) {
|
||
final angleExpr = tanMatch.group(1)!;
|
||
final angle = _evaluateAngleExpression(angleExpr);
|
||
if (angle != null) {
|
||
return _getTanExactValue(angle);
|
||
}
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
/// 计算角度表达式(如 30+45 = 75)
|
||
int? _evaluateAngleExpression(String expr) {
|
||
final parts = expr.split('+');
|
||
int sum = 0;
|
||
for (final part in parts) {
|
||
final num = int.tryParse(part.trim());
|
||
if (num == null) return null;
|
||
sum += num;
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
/// 获取 sin 的精确值
|
||
String? _getSinExactValue(int angle) {
|
||
// 标准化角度到 0-360 度
|
||
final normalizedAngle = angle % 360;
|
||
|
||
switch (normalizedAngle) {
|
||
case 0:
|
||
case 360:
|
||
return '0';
|
||
case 30:
|
||
return '\\frac{1}{2}';
|
||
case 45:
|
||
return '\\frac{\\sqrt{2}}{2}';
|
||
case 60:
|
||
return '\\frac{\\sqrt{3}}{2}';
|
||
case 75:
|
||
return '1 + \\frac{\\sqrt{2}}{2}';
|
||
case 90:
|
||
return '1';
|
||
case 120:
|
||
return '\\frac{\\sqrt{3}}{2}';
|
||
case 135:
|
||
return '\\frac{\\sqrt{2}}{2}';
|
||
case 150:
|
||
return '\\frac{1}{2}';
|
||
case 180:
|
||
return '0';
|
||
case 210:
|
||
return '-\\frac{1}{2}';
|
||
case 225:
|
||
return '-\\frac{\\sqrt{2}}{2}';
|
||
case 240:
|
||
return '-\\frac{\\sqrt{3}}{2}';
|
||
case 270:
|
||
return '-1';
|
||
case 300:
|
||
return '-\\frac{\\sqrt{3}}{2}';
|
||
case 315:
|
||
return '-\\frac{\\sqrt{2}}{2}';
|
||
case 330:
|
||
return '-\\frac{1}{2}';
|
||
default:
|
||
return null;
|
||
}
|
||
}
|
||
|
||
/// 获取 cos 的精确值
|
||
String? _getCosExactValue(int angle) {
|
||
// cos(angle) = sin(90 - angle)
|
||
final complementaryAngle = 90 - angle;
|
||
return _getSinExactValue(complementaryAngle.abs());
|
||
}
|
||
|
||
/// 获取 tan 的精确值
|
||
String? _getTanExactValue(int angle) {
|
||
// tan(angle) = sin(angle) / cos(angle)
|
||
final sinValue = _getSinExactValue(angle);
|
||
final cosValue = _getCosExactValue(angle);
|
||
|
||
if (sinValue != null && cosValue != null) {
|
||
if (cosValue == '0') return null; // 未定义
|
||
return '\\frac{$sinValue}{$cosValue}';
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
/// 将三角函数的参数从度转换为弧度
|
||
String _convertTrigToRadians(String input) {
|
||
String result = input;
|
||
|
||
// 正则表达式匹配三角函数调用,如 sin(30), cos(45), tan(60)
|
||
final trigPattern = RegExp(
|
||
r'(sin|cos|tan|asin|acos|atan)\s*\(\s*([^)]+)\s*\)',
|
||
caseSensitive: false,
|
||
);
|
||
|
||
result = result.replaceAllMapped(trigPattern, (match) {
|
||
final func = match.group(1)!;
|
||
final arg = match.group(2)!;
|
||
|
||
// 如果参数已经是弧度相关的表达式(包含 pi 或 π),则不转换
|
||
if (arg.contains('pi') || arg.contains('π') || arg.contains('rad')) {
|
||
return '$func($arg)';
|
||
}
|
||
|
||
// 将度数转换为弧度:度 * π / 180
|
||
return '$func(($arg)*($pi/180))';
|
||
});
|
||
|
||
return result;
|
||
}
|
||
|
||
/// 将数值结果格式化为几倍根号的形式
|
||
String _formatSqrtResult(double result) {
|
||
// 处理负数
|
||
if (result < 0) {
|
||
return '-${_formatSqrtResult(-result)}';
|
||
}
|
||
|
||
// 处理零
|
||
if (result == 0) return '0';
|
||
|
||
// 检查是否接近整数
|
||
final rounded = result.round();
|
||
if ((result - rounded).abs() < 1e-10) {
|
||
return rounded.toString();
|
||
}
|
||
|
||
// 计算 result 的平方,看它是否接近整数
|
||
final squared = result * result;
|
||
final squaredRounded = squared.round();
|
||
|
||
// 如果 squared 接近整数,说明 result 是某个数的平方根
|
||
if ((squared - squaredRounded).abs() < 1e-6) {
|
||
// 寻找最大的完全平方数因子
|
||
int maxSquareFactor = 1;
|
||
for (int i = 2; i * i <= squaredRounded; i++) {
|
||
if (squaredRounded % (i * i) == 0) {
|
||
maxSquareFactor = i * i;
|
||
}
|
||
}
|
||
|
||
final coefficient = sqrt(maxSquareFactor).round();
|
||
final remaining = squaredRounded ~/ maxSquareFactor;
|
||
|
||
if (remaining == 1) {
|
||
// 完全平方数,直接返回系数
|
||
return coefficient.toString();
|
||
} else if (coefficient == 1) {
|
||
return '\\sqrt{$remaining}';
|
||
} else {
|
||
return '$coefficient\\sqrt{$remaining}';
|
||
}
|
||
}
|
||
|
||
// 如果不是平方根的结果,返回原始数值(保留几位小数)
|
||
return result
|
||
.toStringAsFixed(6)
|
||
.replaceAll(RegExp(r'\.0+$'), '')
|
||
.replaceAll(RegExp(r'\.$'), '');
|
||
}
|
||
|
||
String _expandExpressions(String input) {
|
||
String result = input;
|
||
int maxIterations = 10; // Prevent infinite loops
|
||
int iterationCount = 0;
|
||
|
||
while (iterationCount < maxIterations) {
|
||
String oldResult = result;
|
||
|
||
final powerMatch = RegExp(
|
||
r'(-?\d*\.?\d*)?\(([^)]+)\)\^2',
|
||
).firstMatch(result);
|
||
if (powerMatch != null) {
|
||
final kStr = powerMatch.group(1);
|
||
double k = 1.0;
|
||
if (kStr != null && kStr.isNotEmpty) {
|
||
k = kStr == '-' ? -1.0 : double.parse(kStr);
|
||
}
|
||
|
||
final factor = powerMatch.group(2)!;
|
||
final coeffs = _parsePolynomial(factor);
|
||
final a = coeffs[1] ?? 0;
|
||
final b = coeffs[0] ?? 0;
|
||
|
||
final newA = k * a * a;
|
||
final newB = k * 2 * a * b;
|
||
final newC = k * b * b;
|
||
|
||
final expanded =
|
||
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
|
||
result = result.replaceFirst(powerMatch.group(0)!, '($expanded)');
|
||
iterationCount++;
|
||
continue;
|
||
}
|
||
|
||
final factorMulMatch = RegExp(
|
||
r'\(([^)]+)\)\(([^)]+)\)',
|
||
).firstMatch(result);
|
||
if (factorMulMatch != null) {
|
||
final factor1 = factorMulMatch.group(1)!;
|
||
final factor2 = factorMulMatch.group(2)!;
|
||
final coeffs1 = _parsePolynomial(factor1);
|
||
final coeffs2 = _parsePolynomial(factor2);
|
||
|
||
final a = coeffs1[1] ?? 0;
|
||
final b = coeffs1[0] ?? 0;
|
||
final c = coeffs2[1] ?? 0;
|
||
final d = coeffs2[0] ?? 0;
|
||
|
||
final newA = a * c;
|
||
final newB = a * d + b * c;
|
||
final newC = b * d;
|
||
|
||
final expanded =
|
||
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
|
||
result = result.replaceFirst(factorMulMatch.group(0)!, '($expanded)');
|
||
iterationCount++;
|
||
continue;
|
||
}
|
||
|
||
// Handle expressions like x(expr) or (expr)x or coeff(expr)
|
||
final termFactorMatch = RegExp(
|
||
r'([+-]?(?:\d*\.?\d*)?x?)\(([^)]+)\)',
|
||
).firstMatch(result);
|
||
if (termFactorMatch != null) {
|
||
final termStr = termFactorMatch.group(1)!;
|
||
final factorStr = termFactorMatch.group(2)!;
|
||
|
||
// Skip if the term is just a sign or empty
|
||
if (termStr == '+' || termStr == '-' || termStr.isEmpty) {
|
||
break;
|
||
}
|
||
|
||
// Parse the term (coefficient and x power)
|
||
final termCoeffs = _parsePolynomial(termStr);
|
||
final factorCoeffs = _parsePolynomial(factorStr);
|
||
|
||
final termA = termCoeffs[1] ?? 0; // x coefficient
|
||
final termB = termCoeffs[0] ?? 0; // constant term
|
||
|
||
final factorA = factorCoeffs[1] ?? 0; // x coefficient
|
||
final factorB = factorCoeffs[0] ?? 0; // constant term
|
||
|
||
// Multiply: (termA*x + termB) * (factorA*x + factorB)
|
||
final newA = termA * factorA;
|
||
final newB = termA * factorB + termB * factorA;
|
||
final newC = termB * factorB;
|
||
|
||
final expanded =
|
||
'${newA}x^2${newB >= 0 ? '+' : ''}${newB}x${newC >= 0 ? '+' : ''}$newC';
|
||
result = result.replaceFirst(termFactorMatch.group(0)!, '($expanded)');
|
||
iterationCount++;
|
||
continue;
|
||
}
|
||
|
||
if (result == oldResult) break;
|
||
iterationCount++;
|
||
}
|
||
|
||
if (iterationCount >= maxIterations) {
|
||
throw Exception('表达式展开过于复杂,请简化输入。');
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
LinearEquationParts _parseLinearEquation(String input) {
|
||
final parts = input.split('=');
|
||
if (parts.length != 2) throw Exception("方程格式错误,应包含一个'='。");
|
||
|
||
final leftCoeffs = _parsePolynomial(parts[0]);
|
||
final rightCoeffs = _parsePolynomial(parts[1]);
|
||
|
||
return LinearEquationParts(
|
||
(leftCoeffs[1] ?? 0.0),
|
||
(leftCoeffs[0] ?? 0.0),
|
||
(rightCoeffs[1] ?? 0.0),
|
||
(rightCoeffs[0] ?? 0.0),
|
||
);
|
||
}
|
||
|
||
Map<int, double> _parsePolynomial(String side) {
|
||
final coeffs = <int, double>{};
|
||
// 扩展模式以支持 sqrt 函数
|
||
final pattern = RegExp(
|
||
r'([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))x(?:\^(\d+))?|([+-]?(?:\d*\.?\d*|sqrt\(\d+\)))',
|
||
);
|
||
var s = side.startsWith('+') || side.startsWith('-') ? side : '+$side';
|
||
|
||
for (final match in pattern.allMatches(s)) {
|
||
if (match.group(3) != null) {
|
||
// 常数项
|
||
final constStr = match.group(3)!;
|
||
final constValue = _parseCoefficientWithSqrt(constStr);
|
||
coeffs[0] = (coeffs[0] ?? 0) + constValue;
|
||
} else {
|
||
// x 的幂次项
|
||
int power = match.group(2) != null ? int.parse(match.group(2)!) : 1;
|
||
String coeffStr = match.group(1) ?? '+';
|
||
final coeff = _parseCoefficientWithSqrt(coeffStr);
|
||
coeffs[power] = (coeffs[power] ?? 0) + coeff;
|
||
}
|
||
}
|
||
return coeffs;
|
||
}
|
||
|
||
/// 解析包含 sqrt 函数的系数
|
||
double _parseCoefficientWithSqrt(String coeffStr) {
|
||
if (coeffStr.isEmpty || coeffStr == '+') return 1.0;
|
||
if (coeffStr == '-') return -1.0;
|
||
|
||
// 检查是否包含 sqrt 函数
|
||
final sqrtMatch = RegExp(r'sqrt\((\d+)\)').firstMatch(coeffStr);
|
||
if (sqrtMatch != null) {
|
||
final innerValue = int.parse(sqrtMatch.group(1)!);
|
||
|
||
// 对于完全平方数,直接返回整数结果
|
||
final sqrtValue = sqrt(innerValue.toDouble());
|
||
final rounded = sqrtValue.round();
|
||
if ((sqrtValue - rounded).abs() < 1e-10) {
|
||
// 检查是否有系数
|
||
final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, '');
|
||
if (coeffPart.isEmpty) return rounded.toDouble();
|
||
if (coeffPart == '-') return -rounded.toDouble();
|
||
|
||
final coeff = double.parse(coeffPart);
|
||
return coeff * rounded;
|
||
}
|
||
|
||
// 对于非完全平方数,计算数值但保持高精度
|
||
final nonPerfectSqrtValue = sqrt(innerValue.toDouble());
|
||
|
||
// 检查是否有系数
|
||
final coeffPart = coeffStr.replaceFirst(sqrtMatch.group(0)!, '');
|
||
if (coeffPart.isEmpty) return nonPerfectSqrtValue;
|
||
if (coeffPart == '-') return -nonPerfectSqrtValue;
|
||
|
||
final coeff = double.parse(coeffPart);
|
||
return coeff * nonPerfectSqrtValue;
|
||
}
|
||
|
||
// 普通数值
|
||
return double.parse(coeffStr);
|
||
}
|
||
|
||
List<double> _parseTwoVariableLinear(String equation) {
|
||
final parts = equation.split('=');
|
||
if (parts.length != 2) throw Exception("方程 $equation 格式错误");
|
||
final c = double.tryParse(parts[1]) ?? 0.0;
|
||
|
||
double a = 0, b = 0;
|
||
final xMatch = RegExp(r'([+-]?\d*\.?\d*)x').firstMatch(parts[0]);
|
||
if (xMatch != null) {
|
||
final coeff = xMatch.group(1);
|
||
if (coeff == null || coeff.isEmpty || coeff == '+') {
|
||
a = 1.0;
|
||
} else if (coeff == '-') {
|
||
a = -1.0;
|
||
} else {
|
||
a = double.tryParse(coeff) ?? 0.0;
|
||
}
|
||
}
|
||
final yMatch = RegExp(r'([+-]?\d*\.?\d*)y').firstMatch(parts[0]);
|
||
if (yMatch != null) {
|
||
final coeff = yMatch.group(1);
|
||
if (coeff == null || coeff.isEmpty || coeff == '+') {
|
||
b = 1.0;
|
||
} else if (coeff == '-') {
|
||
b = -1.0;
|
||
} else {
|
||
b = double.tryParse(coeff) ?? 0.0;
|
||
}
|
||
}
|
||
return [a, b, c];
|
||
}
|
||
|
||
({String formula, String solution})? _tryFactorization(int a, int b, int c) {
|
||
if (a == 0) return null;
|
||
int ac = a * c;
|
||
int absAc = ac.abs();
|
||
for (int d = 1; d <= sqrt(absAc).toInt(); d++) {
|
||
if (absAc % d == 0) {
|
||
int d1 = d;
|
||
int d2 = absAc ~/ d;
|
||
List<int> signs1 = ac >= 0 ? [1, -1] : [1, -1];
|
||
List<int> signs2 = ac >= 0 ? [1, -1] : [1, -1];
|
||
for (int s1 in signs1) {
|
||
for (int s2 in signs2) {
|
||
int m = s1 * d1;
|
||
int n = s2 * d2;
|
||
if (check(m, n, b)) return formatFactor(m, n, a);
|
||
m = s1 * d1;
|
||
n = s2 * (-d2);
|
||
if (check(m, n, b)) return formatFactor(m, n, a);
|
||
m = s1 * (-d1);
|
||
n = s2 * d2;
|
||
if (check(m, n, b)) return formatFactor(m, n, a);
|
||
m = s1 * (-d1);
|
||
n = s2 * (-d2);
|
||
if (check(m, n, b)) return formatFactor(m, n, a);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return null;
|
||
}
|
||
|
||
bool check(int m, int n, int b) => m + n == b;
|
||
|
||
({String formula, String solution}) formatFactor(int m, int n, int a) {
|
||
// Roots are -m/a and -n/a
|
||
int g1 = gcd(m.abs(), a.abs());
|
||
int root1Num = -m ~/ g1;
|
||
int root1Den = a ~/ g1;
|
||
|
||
int g2 = gcd(n.abs(), a.abs());
|
||
int root2Num = -n ~/ g2;
|
||
int root2Den = a ~/ g2;
|
||
|
||
String sol1 = _formatFraction(root1Num, root1Den);
|
||
String sol2 = _formatFraction(root2Num, root2Den);
|
||
|
||
// For formula, show (a x + m)(x + n/a) or simplified
|
||
String f1 = a == 1 ? 'x' : '${a}x';
|
||
f1 = m == 0 ? f1 : '$f1 ${m >= 0 ? '+' : ''} $m';
|
||
|
||
String f2;
|
||
if (n % a == 0) {
|
||
int coeff = n ~/ a;
|
||
f2 = 'x ${coeff >= 0 ? '+' : ''} $coeff';
|
||
if (coeff == 0) f2 = 'x';
|
||
} else {
|
||
f2 = 'x ${n >= 0 ? '+' : ''} \\frac{$n}{$a}';
|
||
}
|
||
|
||
String formula = '\$\$($f1)($f2) = 0\$\$';
|
||
|
||
String solution;
|
||
if (root1Num * root2Den == root2Num * root1Den) {
|
||
solution = '\$\$x_1 = x_2 = $sol1\$\$';
|
||
} else {
|
||
solution = '\$\$x_1 = $sol1, \\quad x_2 = $sol2\$\$';
|
||
}
|
||
|
||
return (formula: formula, solution: solution);
|
||
}
|
||
|
||
String _formatFraction(int num, int den) {
|
||
if (den == 0) return 'undefined';
|
||
|
||
// Handle sign: make numerator positive, put sign outside
|
||
bool isNegative = (num < 0) != (den < 0);
|
||
int absNum = num.abs();
|
||
int absDen = den.abs();
|
||
|
||
// Simplify fraction
|
||
int g = gcd(absNum, absDen);
|
||
absNum ~/= g;
|
||
absDen ~/= g;
|
||
|
||
if (absDen == 1) {
|
||
return isNegative ? '-$absNum' : '$absNum';
|
||
} else {
|
||
String fraction = '\\frac{$absNum}{$absDen}';
|
||
return isNegative ? '-$fraction' : fraction;
|
||
}
|
||
}
|
||
|
||
int gcd(int a, int b) => b == 0 ? a : gcd(b, a % b);
|
||
}
|